为提高米香型白酒的品质,将筛选得到的克鲁维毕赤酵母(Pichia kudriazevii)、异常维克汉逊酵母(Wickerhamomyces anomalus)、扣囊复膜酵母(Saccharomycopsis fibuligera)3株产香酵母与1株酿酒酵母(Saccharomyces cerevisiae)作为供试菌株,研究了其菌株形态、生长周期、抗逆性以及发酵特性,并探索了菌株间的相互作用对菌体生长与代谢的影响规律。结果显示,各菌株进入稳定期的时间存在明显差异。在抗逆性方面,4株菌均表现出良好的耐热性、耐酸性、乙醇耐受性与糖耐受性。产酸、产酯、产乙醇能力最强的菌株分别是S. fibuligera、P. kudriazevii、S. cerevisiae。相互作用方面,S. cerevisiae会抑制其余3株产香酵母的生长(P<0.05),而产香酵母对S. cerevisiae的生长无明显影响;此外,P. kudriazevii会显著抑制W. anomalus(P<0.05)。4株菌最优的接种比例为106∶106∶106∶106 CFU/mL,在接种3株产香酵母8 h后再接种S. cerevisiae,风味物质的含量最优。研究结果表明,供试菌株具备生物增香、提高酒体品质的良好潜力。
To enhance the quality of rice-flavor liquor, three aroma-producing yeast strains including Pichia kudriazevii, Wickerhamomyces anomalus, Saccharomycopsis fibuligera and one strain of Saccharomyces cerevisiae were screened as testing strains and their morphology, growth cycle, stress resistance and fermentative characteristics were evaluated. On this basis, the influence of interaction among these strains on the growth and metabolism of cell was further explored. The results showed that the time for each strain to enter the stable period was significantly discrepant and four strains all behaved well in heat resistance, acid resistance, ethanol tolerance and sugar tolerance. The strains with the strongest ability to produce acid, ester and ethanol were S. fibuligera, P. kudriazevii and S. cerevisiae, respectively. In terms of interaction, S. cerevisiae inhibited the growth of the other three aroma-producing yeast strains (P<0.05), while aroma-producing yeasts had no significant effect on the growth of S. cerevisiae. In addition, P. kudriazevii significantly inhibited W. anomalus (P<0.05). The optimal inoculation ratio of these four strains was 106∶106∶106∶106 CFU/mL and the content of flavor substances would be the most abundant when S. cerevisiae was inoculated 8 h after inoculating three strains of aroma-producing yeasts. The present study showed that the testing strains had good potential for bio-flavoring and improving wine quality.
[1] 崔维东, 李勇, 张晓梅. 米香型白酒-苯乙醇蒸馏曲线[J]. 酿酒, 2008, 35(6): 99.
[2] 张会娟, 张首玉, 邱聪, 等. 一株产酯酵母的鉴定及发酵性能研究[J]. 河南工业大学学报(自然科学版), 2015, 36(2): 23-27.
[3] 王益姝. 生香酵母及其面团发酵过程与面包香气特征研究[D]. 无锡: 江南大学, 2016.
[4] 王充. 热醇化和产香酵母发酵对烟草薄片浓缩液品质的影响及应用研究[D]. 郑州: 郑州轻工业学院, 2018.
[5] 邹谋勇, 朱新贵, 刘丹, 等. 产2-苯乙醇酵母的鉴定及其在酱油发酵中的应用[J]. 食品科学, 2019, 40(6): 217-222.
[6] 王益姝, 钱超, 黄卫宁, 等. 梅兰春酒醅中生香酵母的分离鉴定及其发酵面包香气成分分析[J]. 食品与发酵工业, 2016, 42(9): 45-51.
[7] 申光辉, 冯孟, 张志清, 等. 生香酵母发酵桑葚低糖复合果酱工艺优化及风味、抗氧化活性变化分析[J]. 江苏农业学报, 2018, 34(3): 669-678.
[8] 罗小叶, 邱树毅, 陆安谋, 等. 酱香大曲产香酵母的分离及鉴定[J]. 食品与发酵工业, 2016, 42(12): 26-31.
[9] 毛宜祥, 郑翠萍. 怎样制好米曲汁培养基[J]. 上海调味品, 1990(1):31.
[10] 黄慧芬. 米香型白酒酿造产香酵母的筛选鉴定及其产酯规律研究[D]. 长沙: 中南林业科技大学, 2018.
[11] 陈小龙, 王远山, 郑裕国, 等. 腺苷蛋氨酸发酵条件及发酵培养基的优化[J]. 中国生物工程杂志, 2004, 24(11): 64-68.
[12] 李国生, 曲玲, 任海霞, 等. 野生灵芝组织分离研究初报[J]. 山东农业科学, 2008(4): 45-46.
[13] 吴小霞. 乳酸菌对老面馒头品质的影响及其淀粉消化特性研究[D]. 长沙: 中南林业科技大学, 2019.
[14] 李宇辉, 郭安民, 刘成江, 等. 伊犁牧区传统发酵乳制品中产香酵母菌的分离及香气成分分析[J]. 食品与发酵工业, 2016, 42(11): 179-184.
[15] 滕超, 曲玲玉, 师雨梦, 等. 传统面食发酵剂中酵母菌的筛选及性能研究[J]. 中国食品学报, 2017, 17(11): 74-81.
[16] 卢亭, 何计龙, 夏慧丽, 等. 水浴静置皂化法测定白酒中的总酯[J]. 食品研究与开发, 2016, 37(23): 154-156.
[17] 中华人民共和国国家卫生和计划生育委员会. GB 5009.225—2016 食品安全国家标准 酒中乙醇浓度的测定[S]. 北京: 中国标准出版社, 2016.
[18] HO V T T, ZHAO J, FLEET G. Yeasts are essential for cocoa bean fermentation[J]. International Journal of Food Microbiology, 2014, 174:72-87.
[19] 白梦洋, 吴祖芳, 李若云, 等. 混合培养条件下酿酒酵母菌与毕赤酵母菌的相互影响[J]. 食品科学, 2017, 38(12): 9-14.
[20] ZHA M S, SUN B G, WU Y P, et al. Improving flavor metabolism of Saccharomyces cerevisiae by mixed culture with Wickerhamomyces anomalus for Chinese Baijiu making[J]. Journal of Bioscience and Bioengineering, 2018, 126(2): 189-195.
[21] 贵州省卫生和计划生育委员会. DBS52/ 021—2016 食品安全地方标准 白酒中甲醇、高级醇类和酯类的同时测定 气相色谱法 [S]. 贵州: 中国标准出版社, 2016.
[22] ZHENG F L,ZHANG W W, SUI Y A, et al. Sugar protectants improve the thermos tolerance and biocontrol efficacy of the biocontrol yeast, Candida oleophila[J]. Frontiers in Microbiology, 2019, 10: 1-8.
[23] UDOM N, CHANSONGKROW P, CHAROENSAWAN V, et al. Coordination of the cell wall integrity and high-osmolarity glycerol pathways in response to ethanol stress in Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 2019, 85(15): e00551-19.
[24] 毕新煜, 刘功良, 姜弘佳, 等. 酵母菌高糖耐受机制的研究进展[J]. 中国酿造, 2017, 36(10): 1-4.
[25] MAGER W H, SIDERIUS M. Novel insights into the osmotic stress response of yeast[J]. FEMS Yeast Research, 2002, 2(3): 251-257.
[26] 曾朝珍, 康三江, 张霁红, 等. 混菌发酵体系中异常汉逊酵母生长抑制机制研究[J]. 中国农业科技导报, 2019, 21(3): 48-53.
[27] WANG C X, MAS A, ESTEVE-ZARZOSO B. The interaction between Saccharomyces cerevisiae and non-Saccharomyces yeast during alcoholic fermentation is species and strain specific[J]. Frontiers in Microbiology, 2016, 7: 1-11.
[28] CURIEL J A, MORALES P, GONZALEZ R, et al. Different non-Saccharomyces yeast species stimulate nutrient consumption in S. cerevisiae mixed cultures[J]. Frontiers in Microbiology, 2017, 8: 502.
[29] 白梦洋, 吴祖芳, 李若云, 等. 果酒酵母菌多菌种混合培养的生长规律及挥发性风味物质的差异性分析[J]. 中国食品学报, 2019, 19(5): 214-221.
[30] HAZELWOOD L A, DARAN J-M, MARIS A J A V, et al. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism[J]. Applied & Environmental Microbiology, 2008, 74(8): 2 259-2 266.
[31] GONZÁLEZ B, VÁZQUEZ J, MORCILLO-PARRA M á, et al. The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability[J]. Food Microbiology, 2018, 74: 64-74.
[32] ESCRIBANO-VIANA R, GONZÁLEZ-ARENZANA L, PORTU J, et al. Wine aroma evolution throughout alcoholic fermentation sequentially inoculated with non-Saccharomyces/Saccharomyces yeasts[J]. Food Research International,2018, 112: 17-24.