分析与检测

基于UPLC-MS/MS测定烘焙咖啡豆中美拉德产物F3-A含量

  • 王东旭 ,
  • 胡奇杰 ,
  • 王凤丽 ,
  • 王新财 ,
  • 厉芬 ,
  • 陈褚建
展开
  • (湖州市食品药品检验研究院,浙江 湖州,313000)
博士,工程师(通讯作者,E-mail:11237122@zju.edu.cn)

收稿日期: 2020-06-19

  修回日期: 2020-07-06

  网络出版日期: 2020-12-30

基金资助

湖州市公益性应用研究项目(2017GY10);浙江省食品药品监管系统科技计划项目(2018005)

Analysis of the Maillard reaction product F3-A of roasted coffee beans by UPLC-MS/MSWANG

  • Dongxu ,
  • HU Qijie ,
  • WANG Fengli ,
  • WANG Xincai ,
  • LI Fen ,
  • CHEN Chujian
Expand
  • (Huzhou Institute for Food and Drug Control,Huzhou 313000,China)

Received date: 2020-06-19

  Revised date: 2020-07-06

  Online published: 2020-12-30

摘要

为建立超高效液质联用法(ultra-performance liquid chromatography-tandem mass spectrometry,UPLC-MS/MS)检测烘焙咖啡豆中美拉德产物[5-(5,6-dihydro-4H-pyridin-3-ylidenemethyl)furan-2-yl]methanol(F3-A)含量的分析方法,并基于该方法检测不同烘焙模式下烘焙咖啡豆中F3-A含量,样品采用1 mol/L HCl溶液超声提取,MCX固相萃取小柱纯化,经Waters ACQUITY UPLC BEH C18色谱柱分离后,在串联质谱负离子多反应监测模式下检测,外标法定量。结果表明,F3-A在10~2 000 μg/kg线性关系良好,决定系数达到0.999,加标回收率在85.7%~93.3%,相对标准偏差为2.56%~3.97%。烘焙咖啡豆样品检测显示,随烘焙程度增加,F3-A含量先升后降,其中轻度烘焙F3-A含量最高。咖啡豆品种、烘焙时间和温度是F3-A形成主要影响因素,F3-A形成最佳条件为:肯尼亚AA++咖啡豆200 ℃烘焙10 min,F3-A含量达到329.5 μg/kg。

本文引用格式

王东旭 , 胡奇杰 , 王凤丽 , 王新财 , 厉芬 , 陈褚建 . 基于UPLC-MS/MS测定烘焙咖啡豆中美拉德产物F3-A含量[J]. 食品与发酵工业, 2020 , 46(23) : 228 -232 . DOI: 10.13995/j.cnki.11-1802/ts.024801

Abstract

A ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the determination of maillard reaction product [5-(5,6-Dihydro-4H-pyridin-3-ylidenemethyl)furan-2-yl]methanol (F3-A) in roasted coffee beans was constructed,and the contents of F3-A in coffee beans roasted to different degrees were detected by using this method.The sample was extracted with 1 mol/L HCl in an ultrasonic bath,purified by MCX solid phase extraction column.The separation of F3-A was performed on a Waters ACQUITY UPLC BEH C18 column (100 mm×2.1 mm,1.7 μm),and determined in the positive MRM modes by MS/MS using external standard method.The method showed a good linearity over the range of 10-2 000 μg/kg withr2=0.999.Recovery rates of F3-A were 85.7%-93.3% at three spiked levels in roasted coffee beans and the relative standard deviations were 2.56%-3.97%.The roasted coffee bean samples results showed that with increasing roasting degree,the formation of F3-A was found and the contents of F3-A first increased and then decreased,light roasting degree showed the maximum F3-A content.The types of coffee bean,the roasting temperature and the roasting time were the major factors in the formation of F3-A during roasting coffee beans,the optimum conditions for the formation of F3-A were Kenya++ coffee beans roasted at 200 ℃ for 10 min,and the content of F3-A was 329.5 μg/kg.

参考文献

[1] JAEGER H,JANOSITZ A,KNORR D.The Maillard reaction and its control during food processing.The potential of emerging technologies[J].Pathologie Biologie,2010,58(3):207-213.
[2] MASTROCOLA D,MUNARI M.Progress of the Maillard reaction and antioxidant action of Maillard reaction products in preheated model system during storage[J].Journal of Agricultural and Food Chemistry,2000,48(8):3 555-3 559.
[3] CHEN X,KITTS D D.Antioxidant and anti-Inflammatory activities of Maillard reaction products isolated from sugaramino acid model systems[J].Journal of Agricultural and Food Chemistry,2011,59(20):11 294-11 303.
[4] MILLER R,OLSSON K,PERNEMALM P.Formation of aromatic compounds from carbohydrates.IX.Reaction ofD-glucose and L-lysine in slightly acidic,aqueous solution[J].Acta Chemica Scandinavica,1984,38B:689-694.
[5] MILLER R.Synthesis and stereochemistry of (E)-5-(3,4,5,6-tetrahydropyrid-3-ylidenemethyl)-2-furanmethanol,a product of the reaction betweenD-glucose andL-lysine[J].Acta Chemica Scandinavica,1987,41B:208-209.
[6] TOTSUKA H,TOKUZEN K,ONO H,et al.A novel yellow compound and furpipate derivatives formed from furfural or 5-hydroxymethylfurfural in the presence of lysine[J].Food Science and Technology Research,2009,15(1):45-50.
[7] CHEN X,CHEN G,CHEN H,et al.Elucidation of the chemical structure and determination of the production conditions for a bioactive Maillard reaction product,[5-(5,6-dihydro-4H-pyridin-3-ylidenemethyl)furan-2-yl]methanol,isolated from a glucose-lysine heated mixture[J].Journal of Agricultural and Food Chemistry,2015,63(5):1739-1 746.
[8] CHEN X,KITTS D D.Evidence for inhibition of nitric oxide and inducible nitric oxide synthase in Caco-2 and RAW 264.7 cells by a Maillard reaction product[5-(5,6-dihydro-4H-pyridin-3-ylidenemethyl)furan-2-yl]methanol[J].Molecular and Cellular Biochemistry,2015,406(1-2):205-215.
[9] CHEN X M,DAI Y,KITTS D D.Detection of Maillard reaction product[5-(5,6-Dihydro4Hpyridin-3-ylidenemethyl)furan-2-yl]methanol (F3-A) in breads and demonstration of bioavailability in Caco2 intestinal cells[J].Journal of Agricultural and Food Chemistry,2016,64(47):9 072-9 077.
[10] 文志华,毕晓菲,鲁维艳.中国咖啡消费趋势浅谈[J].农产品加工,2018(1):69-70.
WEN Z H,BI X F,LU W Y.Discussion on the trend of Chinese coffee consumption[J].Farm Products Processing,2018(1):69-70.
[11] 董文江,杨静园,陆敏泉,等.热泵干燥对生咖啡豆活性物质和挥发性成分的影响研究[J].现代食品科技,2016,32(4):141-149.
DONG W J,YANG J Y,LU M Q,et al.Effect of heat pump drying on the bioactive components and volatile compounds in green coffee beans[J].Modern Food Science and Technology,2016,32(4):141-149.
[12] 张晓霞,王小芬,韦万兴,等.绿咖啡豆的抗氧化活性研究[J].食品科技,2014,39(8):220-225.
ZHANG X X,WANG X F,WEI W X,et al.Antioxidative activity of green coffee beans[J].Food Science and Technology,2014,39(8):220-225.
[13] MOON J K,YOO H S,SHIBAMOTO T.Role of roasting conditions in the level of chlorogenic acid content in coffee beans:correlation with coffee acidity[J].Journal of Agricultural and Food Chemistry,2009,57(12):5 365-5 369
[14] KAMIYAMA M,MOON J K,JANG H W,et al.Role of degradation products of chlorogenic acid in the antioxidant activity of roasted coffee[J].Journal of Agricultural and Food Chemistry,2015,63(7):1 996-2 005.
[15] KITARO O K A.Pharmacological bases of coffee nutrients for diabetes prevention[J].Yakugaku Zasshi,2007,127:1 825-1 836.
[16] ESQUIVEL P,JIMENEZ V M.Functional properties of coffee and coffee by-products[J].Food Research International,2012,46(2):488-495.
[17] 吕文佳,刘云,杨剀舟,等.咖啡主要烘焙风味物质的形成及变化规律[J].食品工业科技,2015,36(3):394-400.
LV W J,LIU Y,YANG K Z,et al.Formation and characteristics of the main roasted coffee flavour compounds[J].Science and Technology of Food Industry,2015,36(3):394-400.
[18] 于淼,董文江,胡荣锁,等.海南兴隆地区不同烘焙度咖啡豆的滋味特性研究[J].现代食品科技,2017,33(4):215-221.
YU M,DONG W J,HU R S,et al.Characterization of taste properties of coffee beans from Xinglong,Hainan province roasted to different degrees[J].Modern Food Science and Technology,2017,33(4):215-221.
[19] 刘敏,蒋跃平,刘韶.鱼腥草中生物碱类化学成分及其生物活性研究进展[J].天然产物研究与开发,2018,30(1):141-145;133.
LIU M,JIANG Y P,LIU S.Advance on alkaloids chemical constituents and bioactivities ofHouttuynlae cordata[J].Natural Product Research and Development,2018,30(1):141-145;133.
[20] 胡荣锁,陆敏泉,初众,等.海南咖啡主要营养成分对比研究[J].营养学报,2013,35(6):622-624.
HU R S,LU M Q,CHU Z,et al.The comparative study on the main nutritional components of Hainan coffees[J].Acta Nutrimenta Sinica,2013,35(6):622-624.
文章导航

/