枸杞酒发酵过程中酵母代谢产生一些有机酸、醇、醛、酮等复杂的物质, 使发酵环境发生了变化, 迫使酚酸物质在此环境下发生氧化、还原或与环境中的物质发生化学反应从而产生各种降解产物。实验测定了酚酸物质在发酵过程中含量的变化及降解产物, 并通过模拟实验, 验证枸杞发酵时可能产生的降解产物。结果表明, 从实验所用枸杞中共检测出7种酚酸单体, 发酵后酚酸降解产物共8种, 这些物质大部分都在最不稳定的双键位置断裂, 同时容易在羰基被还原、羟基被氧化, 产生2, 5-二甲基吡嗪、苯乙酮、4-乙基愈创木酚、丙酸、苯乙酸乙酯、2, 4-二叔丁基苯酚、4-甲氧基苯乙烯和乙酸异戊酯。
During the fermentation of Lycium barbarum wine, various substances, mainly organic acids, alcohols, aldehydes and ketones, were produced from yeast metabolization. The fermentation environment keeps changing, and phenolic acids may be oxidized, reduced or reacted with other substances, yielding various degradation products. In this study, the changes of phenolic acid contents were evaluated during fermentation and the relative degradation products were identified, followed by a verification through simulation experiment. The results showed that seven kinds of phenolic acid monomers were detected and eight kinds of phenolic acid degradation products were obtained after fermentation. Most of these substances break at the most unstable double bond positions and are prone to reduction of carbonyl groups and oxidation of hydroxyl groups, producing 2, 5-dimethylpyrazine, acetophenone, 4-ethyl guaiacol, propionic acid, ethyl phenylacetate, 2, 4-tert-butylphenol, 4-methoxystyrene and iso-amyl acetate.
[1] YAO R Y, HEINRICH M, WECKERLE C S.The genus Lycium as food and medicine:A botanical, ethnobotanical and historical review[J].Journal of Ethnopharmacology, 2018, 212:50-66.
[2] 武芸, 王春林, 王丽朋, 等.黑果枸杞多酚吸附分离特性及抗氧化性研究[J].食品与发酵工业, 2020.DOI:10.13995/j.cnki.11-1802/ts.025714.
WU Y, WANG C L, WANG L P, et al.Lycium ruthenicum Murr.polyphenols adsorption separation properties and oxidation resistance[J].Food and Fermentation Industries, 2020.DOI:10.13995/j.cnki.11-1802/ts.025714.
[3] LI Y, ZOU X, SHEN T, et al.Determination of geographical origin and anthocyanin content of black goji berry (Lycium ruthenicum Murr.) using near-infrared spectroscopy and chemometrics[J].Food Analytical Methods, 2017, 10(4):1 034-1 044.
[4] DELGADO A M, ISSAOUI M, CHAMMEM N.Analysis of main and healthy phenolic compounds in foods[J].Journal of AOAC International, 2019, 102(5):1 356-1 364.
[5] HUANG W, CAI Y, ZHANG Y.Natural phenolic compounds from medicinal herbs and dietary plants:Potential use for cancer prevention[J].Nutrition and Cancer, 2010, 62(1):1-20.
[6] 万娜, 戴国礼.枸杞深加工产业发展趋势的研究[J].食品安全质量检测学报, 2018, 9(20):5 328-5 332.
WAN N, DAI G L.Research on the development trend of deep processing industry of Lycium barbarum[J].Food Safety and Quality Detection Technology, 2018, 9(20):5 328-5 332.
[7] 梁颖, 马蓉, 李亚辉, 等.枸杞酒酿造技术及香气分析研究进展[J].中国酿造, 2019, 38(2):16-20.
LIANG Y, MA R, LI Y H, et al.Research progress in brewing technology and aroma analysis of wolfberry wine[J].China Brewing, 2019, 38(2):16-20.
[8] 马宇, 黄永光.清酱香型白酒挥发性风味组分及香气特征[J].食品科学, 2019, 40(20):241-248.
MA Y, HUANG Y G.Volatile components and aroma characteristics of Fen-Maotai-Flavored liquor[J].Food Science, 2019, 40(20):241-248.
[9] MATHEW S, ABRAHAM T E, SUDHEESH S.Rapid conversion of ferulic acid to 4-vinyl guaiacol and vanillin metabolites by Debaryomyces hansenii[J].Journal of Molecular Catalysis B, Enzymatic, 2006, 44(2):48-52.
[10] 吕海洋, 幸岑璨, 高梦笛, 等.宁夏枸杞多酚Q-TOF/MSE分析及对细胞抗氧化能力的影响[J].核农学报, 2017, 31(2):298-306.
LV H Y, XING C C, GAO M D, et al.Analysis of Ningxia Lycium barbarum polyphenols by Q-TOF/MSE and its effect on cellular antioxidant capacity.[J].Journal of Nuclear Agriculture Sciences, 2017, 31(2):298-306.
[11] INBARAJ B S, LU H, KAO T H, et al.Simultaneous determination of phenolic acids and flavonoids in Lycium barbarum Linnaeus by HPLC-DAD-ESI-MS[J].Journal of Pharmaceutical and Biomedical Analysis, 2010, 51(3):549-556.
[12] FORINO M, TARTAGLIONE L, DELL'AVERSANO C, et al.NMR-based identification of the phenolic profile of fruits of Lycium barbarum (goji berries).Isolation and structural determination of a novel N-feruloyl tyramine dimer as the most abundant antioxidant polyphenol of goji berries[J].Food Chemistry, 2016, 194:1 254-1 259.
[13] ISABEL B, OTTO S, RIITTA T R N, et al.Metabolic profiling of goji berry extracts for discrimination of geographical origin by non-targeted liquid chromatography coupled to quadrupole time-of-flight mass spectrometry[J].Food Research International, 2014, 63:132-138.
[14] RODRIGUES S R, DA C C J, DE ANDRADE S D, et al.Multielementar/centesimal composition and determination of bioactive phenolics in dried fruits and capsules containing Goji berries (Lycium barbarum L.)[J].Food Chemistry, 2019, 273:15-23.
[15] 赵璐.枸杞酒制作中类胡萝卜素降解产物降异戊二烯分析研究[D].银川:宁夏大学, 2018.
ZHAO L.Analysis of isoprene degradation products of carotenoids in wolfberry wine during fermentation process[D].Yinchuan:Ningxia University, 2018.
[16] 马先红, 刘景圣, 李艳红.发芽对粮食酚类化合物及抗氧化活性的影响[J].食品研究与开发, 2015, 36(24):197-200.
MA X H, LIU J S, LI Y H.Effects of germination on the phenolic compounds and antioxidant activity of grain[J].Food Research and Development, 2015, 36(24):197-200.
[17] ADOMA K K, LIU R H.Antioxidant activity of grains[J].Journal of Agricultural and Food Chemistry, 2002, 50(21):6 182-6 187.
[18] WU G, JOHNSON S K, BORNMAN J F, et al.Growth temperature and genotype both play important roles in sorghum grain phenolic composition[J].Scientific Reports, 2016, 6.DOI:10.1038/srep21835.
[19] SHANAKA K A S N, THARUKA M D, SELLATHTHURAI S, et al.Characterization and expression analysis of rockfish (Sebastes schlegelii) myeloid differentiation factor-88 (SsMyD88) and evaluation of its ability to induce inflammatory cytokines through NF-κB[J].Fish and Shellfish Immunology, 2020, 99:59-72.
[20] LU, LI, QUAN, et al.Identification of characteristic aroma volatiles of Ningxia goji berries (Lycium barbarum L.) and their developmental changes[J].International Journal of Food Properties, 2017, 20(1):214-217.
[21] 矫馨瑶, 李恩惠, 王月华, 等.蓝莓多酚稳定性及热降解动力学研究[J].中国食品学报, 2018, 18(1):81-87.
JIAO X Y, LI E H, WANG Y H, et al.Study on stability and thermal degradation kinetics of blueberry polyphenols[J].Journal of Chinese Institute of Food Science and Technology, 2018, 18(1):81-87.
[22] ZHANG L J, CAO Y L, TONG J N, et al.An alkylpyrazine synthesis mechanism involving l-threonine-3-dehydrogenase describes the production of 2, 5-dimethylpyrazine and 2, 3, 5-trimethylpyrazine by Bacillus subtilis[J].Applied and Environmental Microbiology, 2019, 85(24).DOI:10.1128/AEM.01 807-19.