研究报告

升华法纯化茶叶咖啡碱及其对胶原酶和弹性蛋白酶的抑制作用研究

  • 叶心 ,
  • 王力 ,
  • 姜超 ,
  • 杜晓静 ,
  • 丁小玉 ,
  • 王洪新
展开
  • 1(江南大学 食品学院,江苏 无锡,214122)
    2(江苏瑾辉生物科技有限公司,江苏 盐城,224100)
    3(江南大学, 国家功能食品工程技术研究中心,江苏 无锡,214122)
硕士研究生(王洪新教授为通讯作者,E-mail:hxwang@jiangnan.edu.cn)

收稿日期: 2020-09-10

  修回日期: 2020-11-03

  网络出版日期: 2021-06-17

基金资助

国家食品科学与工程一流学科建设项目(JUFSTR20180204)

Purification of tea caffeine by sublimation and its inhibitory activity on collagenase and elastase

  • YE Xin ,
  • WANG Li ,
  • JIANG Chao ,
  • DU Xiaojing ,
  • DING Xiaoyu ,
  • WANG Hongxin
Expand
  • 1(School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
    2(Jiangsu Jinhui Biotechnology Co. Ltd., Yancheng 224100, China)
    3(National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China)

Received date: 2020-09-10

  Revised date: 2020-11-03

  Online published: 2021-06-17

摘要

为实现废弃茶叶资源中咖啡碱的高效提取,并促进茶叶咖啡碱的开发利用,以液液萃取工艺提取茶多酚后的萃余液为原料,采用升华法分离纯化其中的咖啡碱,考察不同前处理剂和升华条件对咖啡碱得率的影响,并运用响应面分析法优化升华工艺参数,最后分析了茶叶咖啡碱对胶原酶和弹性蛋白酶的体外抑制能力。结果表明,升华法分离纯化茶叶咖啡碱的最佳工艺条件为:升华前使用碳酸钠处理萃余液,碳酸钠添加量与萃余液固形物质量比为2.3∶1,升华温度214 ℃、升华时间28 min,在此条件下咖啡碱得率为76.21%,咖啡碱纯度>98.5%。另外,茶叶咖啡碱对胶原酶和弹性蛋白酶具有良好的抑制作用,质量浓度为1 mg/mL时对胶原酶和弹性蛋白酶的抑制率分别达到46.72%和38.43%。该工艺较传统工艺较大地提高了咖啡碱得率,更加经济安全,具有较好的工业运用前景,同时得到的茶叶咖啡碱可作为天然的胶原酶和弹性蛋白酶抑制剂,在相关护肤产品中可被进一步运用。

本文引用格式

叶心 , 王力 , 姜超 , 杜晓静 , 丁小玉 , 王洪新 . 升华法纯化茶叶咖啡碱及其对胶原酶和弹性蛋白酶的抑制作用研究[J]. 食品与发酵工业, 2021 , 47(10) : 43 -49 . DOI: 10.13995/j.cnki.11-1802/ts.025625

Abstract

In order to efficiently extract caffeine from waste tea resources and promote the development and utilization of tea caffeine, the raffinate after extracting tea polyphenols by liquid-liquid extraction was used as raw material to purify caffeine through sublimation. Effects of pretreatment agents and sublimation conditions on caffeine yield were investigated, and response surface methodology was used to optimize the process parameters, followed by analyzing the inhibition of caffeine on collagenase and elastase in vitro. The optimum sublimation conditions were as follows: sodium carbonate was used as pretreatment agent, the mass ratio of sodium carbonate addition to solidified raffinate was 2.3∶1, the sublimation temperature was 214 ℃, and the sublimation time was 28 min. Under these conditions, the yield of caffeine was 76.21%, and the purity of caffeine exceeded 98.5%. Furthermore, tea caffeine had an excellent inhibitory activity on collagenase and elastase, and the inhibition rates at 1 mg/mL were 46.72% and 38.43%, respectively. Compared with the traditional process, this process not only greatly improves the yield of caffeine, but also is much more economical and safer, and has a great industrial application prospect. Meanwhile, the obtained tea caffeine can be used as a natural collagenase and elastase inhibitor, and get a further utilization in related skin care products.

参考文献

[1] TANG G Y, MENG X, GAN R Y, et al.Health functions and related molecular mechanisms of tea components:An update review[J].International Journal of Molecular Sciences, 2019, 20(24):6 196.
[2] 杨新, 陈莉, 卢红梅, 等.茶多酚提取与纯化方法及其功能活性研究进展[J].食品工业科技, 2019, 40(5):322-328;332.
YANG X, CHEN L, LU H M, et al.Research progress on extraction and purification methods of tea polyphenols and its functional activities[J].Science and Technology of Food Industry, 2019, 40(5):322-328;332.
[3] 卫哲, 肖维, 黎忠健, 等.应用转盘塔逆流萃取器从夏秋季次品茶中制备茶多酚[J].食品科学, 2013, 34(14):35-39.
WEI Z, XIAO W, LI Z J, et al.Preparation of tea polyphenols from summer-autumn low-grade tea by countercurrent extraction using rotary disc extractor[J].Food Science, 2013, 34(14):35-39.
[4] 陈琳, 吕杨俊, 张海华, 等.LP-8大孔树脂制备高含量酯型儿茶素茶多酚[J].食品科学, 2019, 40(7):68-73.
CHEN L, LYU Y J, ZHANG H H, et al.Use of macroporous resin LP-8 for preparing tea polyphenols rich in esterified catechins[J].Food Science, 2019, 40(7):68-73.
[5] 刘寒旸, 周艳, 龚宇, 等.咖啡因在肥胖、糖尿病和肿瘤中的研究进展[J].医学综述, 2016, 22(5):928-932.
LIU H Y, ZHOU Y, GONG Y, et al.Research progress of caffeine in obesity, diabetes and tumor[J].Medical Recapitulate, 2016, 22(5):928-932.
[6] MCLELLAN T M, CALDWELL J A, LIBERMAN H R.A review of caffeine′s effects on cognitive, physical and occupational performance[J].Neuroscience and Biobehavioral Reviews, 2016, 71:294-312.
[7] LIY F, OUYANG S H, TU L F, et al.Caffeine protects skin from oxidative stress-induced senescence through the activation of autophagy[J].Theranostics, 2018, 8(20):5 713-5 730.
[8] MICHAEL V, WASIM H, STEVEN F.Therapeutic use of caffeine in dermatology:A literature review[J].Journal of Dermatology and Dermatologic Surgery, 2020, 24(1):18-24.
[9] PETER M S, JUDITH E L, HARVERY A P, et al.Supercritical fluid extraction versus traditional solvent extraction of caffeine from tea leaves:A laboratory-based case study for an organic chemistry course[J].Journal of Chemical Education, 2012, 89(10):1 327-1 330.
[10] BERMEJO D V, REGLERO G, FORNARIET T, et al.Effect of cosolvents (ethyl lactate, ethyl acetate and ethanol) on the supercritical CO2 extraction of caffeine from green tea[J].The Journal of Supercritical Fluids, 2016, 107:507-512.
[11] 字成庭, 沈晓静, 张帮磊, 等.茶叶中天然咖啡因提取技术的比较与分析研究[J].广东化工, 2019, 46(10):73-77.
ZI C T, SHEN X J, ZHANG B L, et al.Comparison and analysis of extraction technology of natural caffeine from tea leaves[J].Guangdong Chemical Industry, 2019, 46(10):73-77.
[12] 张玉竹, 陈凯旋, 唐建城, 等.直接升华法从茶叶中提取咖啡因[J].成都工业学院学报, 2018, 21(2):54-57;89.
ZHANG Y Z, CHEN K X, TANG J C, et al.Direct separation of caffeine from tea by sublimation[J].Journal of Chengdu University of Technology, 2018, 21(2):54-57;89.
[13] 陈秀丽, 高海荣, 李新红, 等.用恒压漏斗从绿茶中提取天然咖啡因的研究[J].食品研究与开发, 2016, 37(5):42-45.
CHEN X L, GAO H R, LI X H, et al.Study on the extraction of natural caffeine from green tea by constant pressure funnel[J].Food Research and Development, 2016, 37(5):42-45.
[14] MAHDIEH S, JAVAD H, ELAHE M.Anti-elastase and anti-collagenase potential of Lactobacilli exopolysaccharides on human fibroblast[J].Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46(sup1):1 051-1 061.
[15] 张琪, 徐维玲, 李翠芹.HPLC法同时测定茶叶中儿茶素类和咖啡因的含量[J].食品工业科技, 2015, 36(4):53-56.
ZHANG Q, XU W L, LI C Q.Simultaneous determination of some selected catechins and caffeine in tea by performance liquid chromatography[J].Science and Technology of Food Industry, 2015, 36(4):53-56.
[16] SATYAVANI K, GURUDEEBAN S, RAMANATHAN T.Inhibitory effect of Excoecaria Agallocha.L extracts on elastase and collagenase and identification of metabolites using HPLC-UV-MS techniques[J].Pharmaceutical Chemistry Journal, 2018, 51(11):960-964.
[17] NEMA N K, MAITY N, SARKAR B K, et al.Matrix metalloproteinase, hyaluronidase and elastase inhibitory potential of standardized extract of Centella asiatica[J].Pharmaceutical Biology, 2013, 51(9):1 182-1 187.
[18] CHEN X Q, DU Y, WU L, et al.Effects of tea polysaccharide conjugates and metal ions on precipitate formation by EGCG and caffeine, the key components of green tea infusion[J].Journal of Agricultural and Food Chemistry, 2019, 67(13):3 744-3 751.
[19] 杜钰.儿茶素与咖啡碱形成沉淀的影响因素研究[D].武汉:湖北工业大学, 2018.
DU Y.Study on the factors affecting the precipitate formation of catechin and caffeine[D].Wuhan:Hubei University of Technology, 2018.
[20] 巫永华, 陆文静, 刘梦虎, 等.响应面优化超声波辅助双水相提取牛蒡多糖及抗氧化分析[J].食品与发酵工业, 2020, 46(5):215-223.
WU Y H, LU W J, LIU M H, et al.Optimization of ultrasonic-assisted aqueous two-phase extraction of burdock polysaccharide by response surface design and its antioxidant activities[J].Food and Fermentation Industries, 2020, 46(5):215-223.
[21] AGATA J T, MARZENA M, STANISLAW R.Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs[J].Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31(sup1):177-183.
[22] 闫晓佳, 梁秀萍, 李思琪, 等.表没食子儿茶素没食子酸酯性质、稳定性及其递送体系的研究进展[J].食品科学, 2020, 41(1):258-266.
YAN X J, LIANG X P, LI S Q, et al.Advances in the properties, stability and delivery systems of epigallocatechin gallate:A review[J].Food Science, 2020, 41(1):258-266.
文章导航

/