研究报告

小曲清香型白酒发酵过程微生物菌群合成高级醇代谢特征

  • 曲冠颐 ,
  • 唐洁 ,
  • 姜健 ,
  • 杨强 ,
  • 刘源才 ,
  • 吴群 ,
  • 陈申习 ,
  • 徐岩
展开
  • 1(工业生物技术教育部重点实验室,江苏 无锡,214122)
    2(江南大学 生物工程学院,江苏 无锡,214122)
    3(酿造微生物学与应用酶学研究室,江苏 无锡,214122)
    4(劲牌有限公司,湖北 大冶,435100)
    5(劲牌有限公司 劲牌研究院,湖北 大冶,435100)
曲冠颐硕士研究生和唐洁工程师为共同第一作者(吴群教授和陈申习高级工程师为共同通讯作者,E-mail:wuq@jiangnan.edu.cn;chenshenxi2006@163.com)

收稿日期: 2020-09-17

  修回日期: 2020-10-11

  网络出版日期: 2021-07-16

基金资助

国家重点研发计划项目(2018YFD0400402)

Metabolism characteristics of higher alcohols synthesized by microbiota in the fermentation process of light aroma type Baijiu started by Xiaoqu

  • QU Guanyi ,
  • TANG Jie ,
  • JIANG Jian ,
  • YANG Qiang ,
  • LIU Yuancai ,
  • WU Qun ,
  • CHEN Shenxi ,
  • XU Yan
Expand
  • 1(Key Laboratory of Industrial Biotechnology,Ministry of Education,Wuxi 214122,China)
    2(School of Biotechnology,Jiangnan University,Wuxi 214122,China)
    3(Center for Brewing Science and Enzyme Technology,Wuxi 214122,China)
    4(Jing Brand Co.Ltd.,Daye 435100,China)
    5(Jing Brand Research Institute,Daye 435100,China)

Received date: 2020-09-17

  Revised date: 2020-10-11

  Online published: 2021-07-16

摘要

为揭示小曲清香型白酒发酵过程菌群合成高级醇的代谢特征,使用气相色谱火焰离子化检测技术(gas chromatography flame ionization detection,GC-FID)分析春秋两季白酒发酵过程中高级醇变化规律,通过高通量扩增子测序揭示发酵过程中微生物群落的演替规律,采用随机森林算法确定差异微生物,相关性分析方法结合固态模拟发酵分析了高级醇代谢及调控规律。结果表明,春季发酵,产生高级醇总量为(179.43±9.57) mg/kg,秋季产量更高,达(276.86±26.80) mg/kg。SaccharomycesPichiaRhizopusLactobacillusWeissella是两季发酵过程绝对优势微生物中的差异属。其中SaccharomycesPichiaLactobacillus跟高级醇产量有显著的相关性(ρ>0.6,P<0.05)。模拟固态发酵Saccharomyces cerevisiae产生(43.52±2.43) mg/kg高级醇,Pichia kudriavzeviiLactobacillus brevis高级醇产量均较低(<3 mg/kg),当三者共培养时,高级醇产量较S.cerevisiae单培养降低了8.49 mg/kg(P<0.05),说明P.kudriavzeviiL.brevis能够调控S.cerevisiae合成代谢高级醇。利用高级醇合成代谢调控微生物可以有效控制白酒发酵过程中高级醇合成代谢。该研究对生产高级醇含量低的优质小曲清香型白酒有指导意义,为发酵食品风味调控提供了理论基础。

本文引用格式

曲冠颐 , 唐洁 , 姜健 , 杨强 , 刘源才 , 吴群 , 陈申习 , 徐岩 . 小曲清香型白酒发酵过程微生物菌群合成高级醇代谢特征[J]. 食品与发酵工业, 2021 , 47(11) : 32 -37 . DOI: 10.13995/j.cnki.11-1802/ts.025697

Abstract

To reveal the metabolism characteristics of higher alcohols produced by microbiota in fermentation process of light aroma type Baijiu started by Xiaoqu, gas chromatography flame ionization detection (GC-FID) was used to analyze the dynamics of higher alcohols during the fermentation process of two seasons. High-throughput amplification sequencing revealed the succession of microbial community during the fermentation process. Subsequently, the differences between microbial communities of the two seasons were analyzed via random forest method. Finally, mechanism of synthesis and regulation of higher alcohols were determined by correlation analysis with simulated solid-state fermentation. The total amount of higher alcohols produced in the samples of spring was (179.43±9.57) mg/kg, and the yield was higher in that of autumn, reaching (276.86±26.80) mg/kg. Saccharomyces, Pichia, Rhizopus, Lactobacillus and Weissella were the differentiate genera among the predominant microorganisms in the two-season samples. Among them, Saccharomyces, Pichia and Lactobacillus had significant correlation coefficients with the yield of higher alcohols (ρ>0.6, P<0.05). Saccharomyces cerevisiae produced (43.52±2.43) mg/kg higher alcohols in simulated solid fermentation. Besides, Pichia kudriavzevii and Lactobacillus brevis produced lower levels of higher alcohols (<3 mg/kg). The yield of higher alcohols produced by coculture system was 8.49 mg/kg lower than that of S. cerevisiae (P>0.05), suggesting that P. kudriavzevii and L. brevis could regulate the synthesis of higher alcohols. The regulation microorganisms could effectively control the synthesis of higher alcohols during the fermentation process. This study has guiding significance for the production of high-quality light aroma type Baijiu started by Xiaoqu with low content of higher alcohols and provides a theoretical basis for the flavor regulation of fermented food.

参考文献

[1] YANG D S,LUO X Q,WANG X G.Characteristics of traditional Chinese shanlan wine fermentation[J].Journal of Bioscience and Bioengineering,2014,117(2):203-207.
[2] MCKARNS S C,HANSCH C,CALDWELL W S,et al.Correlation between hydrophobicity of short-chain aliphatic alcohols and their ability to alter plasma membrane integrity[J].Fundamental and Applied Toxicology,1997,36(1):62-70.
[3] MA L J,HUANG S Y,DU L P,et al.Reduced production of higher alcohols by Saccharomyces cerevisiae in red wine fermentation by simultaneously overexpressing BAT1 and deleting BAT2[J].Journal of Agricultureal and Food Chemistry,2017,65(32):6 936-6 942.
[4] LI W,WANG J H,ZHANG C Y,et al.Regulation of Saccharomyces cerevisiae genetic engineering on the production of acetate esters and higher alcohols during Chinese Baijiu fermentation[J].Journal of Industrial Microbiology and Biotechnology,2017,44(6):949-960.
[5] 李小龙. 芝麻香型白酒发酵过程微生物群落演替及其驱动因素[D].无锡:江南大学,2018.
LI X L.Microbial community succession and its drivers during roasted sesame-flavor liquor fermentation[D].Wuxi:Jiangnan University,2018.
[6] HONG X T,CHEN J,LIU L,et al.Metagenomic sequencing reveals the relationship between microbiota composition and quality of Chinese rice wine[J].Scientific Reports,2016,6.DOI:10.1038/srep26621.
[7] DEFILIPPIS F,GENOVESE A,FERRANTI P,et al.Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate[J].Scientific Reports,2016,6.DOI:10.1038/srep21871.
[8] LEMOS L N,FULTHORPE R R,TRIPLETT E W,et al.Rethinking microbial diversity analysis in the high throughput sequencing era[J].Journal of Microbiological Methods,2011,86(1):42-51.
[9] CAPORASO J G,KUCZNSKI J,STOMBAUGH J,et al.QIIME allows analysis of high-throughput community sequencing data[J].Nature Methods,2010,7(5):335-336.
[10] EDGAR R C.Search and clustering orders of magnitude faster than BLAST[J].Bioinformatics,2010,26(19):2 460-2 461.
[11] 王鹏. 地衣芽孢杆菌强化对浓香型白酒酿造微生物群落结构和代谢的影响[D].无锡:江南大学,2017.
WANG P.Effects of Bacillus licheniformis inoculation on the microbial community structure and metabolism during strong flavored liquor brewing process[D].Wuxi:Jiangnan University,2017.
[12] GAO W J,FAN W L,XU Y.Characterization of the key odorants in light aroma type Chinese liquor by gas chromatography-olfactometry,quantitative measurements,aroma recombination,and omission studies[J].Journal of Agricultural and Food Chemistry,2014,62(25):5 796-5 804.
[13] JIANG J,LIU Y C,LI H H,et al.Modeling and regulation of higher alcohol production through the combined effects of the C/N ratio and microbial interaction[J].Journal of Agricultureal and Food Chemistry,2019,67(38):10 694-10 701.
[14] WANG S L,WU Q,NIE Y,et al.Construction of synthetic microbiota for reproducible flavor compound metabolism in Chinese light-aroma-type liquor produced by solid-state fermentation[J].Applied and Environmental Microbiology,2019,85(10):e03 090-03 018.
[15] ZHANG J Y,LIU Y X,ZHANG N,et al.NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J].Nature Biotechnology,2019,37:676-684.
[16] BARBERÁN A,BATES S T,CASAMAYOR E O,et al.Using network analysis to explore co-occurrence patterns in soil microbial communities[J].The ISME Journal,2012,6(2):343-351.
[17] WANG X S,DU H,XU Y.Source tracking of prokaryotic communities in fermented grain of Chinese strong-flavor liquor[J].International Journal of Food Microbiology,2017,244:27-35.
[18] 王鹏, 吴群,徐岩.中国白酒发酵过程中的核心微生物群及其与环境因子的关系[J].微生物学报,2018,58(1):142-153.
WANG P,WU Q,XU Y.Core microbiota in Chinese liquor fermentation and associations with environmental factors[J].Acta Microbiologica Sinica,2018,58(1):142-153.
[19] SMID E J,LACROIX C.Microbe-microbe interactions in mixed culture food fermentations[J].Current Opinion in Biotechnology,2013,24(2):148-154.
[20] 王慧琳,周炜城,任聪,等.传统发酵食品微生物学研究进展[J].生物学杂志,2018,35(6):1-5.
WANG H L,ZHOU W C,REN C,et al.Recent advances in the study of microbes in traditional fermented foods[J].Journal of Biology,2018,35(6):1-5.
文章导航

/