研究报告

不同温度条件下地衣芽孢杆菌凝乳酶的凝乳性能

  • 李贻珍 ,
  • 牛珂平 ,
  • 曹瑛瑛 ,
  • 王莹 ,
  • 文鹏程 ,
  • 乔海军 ,
  • 张卫兵 ,
  • 张忠明
展开
  • 1(甘肃农业大学 食品科学与工程学院,甘肃 兰州,730070)
    2(秦王川农业高科技产业开发示范基地管理办公室,甘肃 兰州,730030)
    3(甘肃农业大学 理学院,甘肃 兰州,730070)
硕士研究生(张卫兵教授与张忠明副教授为共同通讯作者,E-mail:45330301@qq.com;1958711127@qq.com)

收稿日期: 2020-01-20

  修回日期: 2020-02-07

  网络出版日期: 2021-07-22

基金资助

国家自然科学基金(31760466;31960486;31560442;21864002);甘肃省自然科学基金(20JR10RA524)

Coagulation properties of rennet from Bacillus licheniformis at different temperatures

  • LI Yizhen ,
  • NIU Keping ,
  • CAO Yingying ,
  • WANG Ying ,
  • WEN Pengcheng ,
  • QIAO Haijun ,
  • ZHANG Weibing ,
  • ZHANG Zhongming
Expand
  • 1(College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China)
    2(Qinwangchuan agricultural high-tech industry development demonstration base management office, Lanzhou 730030, China)
    3(College of Sciences, Gansu Agricultural University, Lanzhou 730070, China)

Received date: 2020-01-20

  Revised date: 2020-02-07

  Online published: 2021-07-22

摘要

为研究温度对地衣芽孢杆菌D3.11凝乳酶凝乳性能的影响,以脱脂乳为底物,并以商品凝乳酶为对照,分析凝乳过程中黏度、浊度、持水力、OD值及流变学特性的变化规律,观察凝块的微观结构。结果表明,随着凝乳温度的升高,2种酶体系的黏度值逐渐增大,温度较高时,长时间凝乳会导致体系黏度值下降;在30~45 ℃时2种酶体系的浊度分别随温度升高显著增大(P<0.05);流变学特性表明,商品酶体系所能达到的储能模量(G')的峰值为269.01 Pa,大于地衣芽孢杆菌D3.11凝乳酶体系的峰值232.91 Pa,且随着凝乳温度的上升,2种酶体系的G'不断下降,商品酶体系比地衣芽孢杆菌体系的G'下降更快;2种酶体系持水力均随温度的上升呈先上升后下降的趋势,在35 ℃时2种酶体系的持水力均达到最大;2种酶体系的乳清OD值随温度升高显著增大(P<0.05),地衣芽孢杆菌凝乳酶体系的乳清OD值均大于商品酶体系;利用激光扫描共聚焦显微镜观察微观结构,发现40 ℃条件下2种酶体系的凝乳效果最好。该研究发现温度对地衣芽孢杆菌D3.11凝乳酶的凝乳性能影响显著,实验结果可为地衣芽孢杆菌凝乳酶的应用提供理论依据。

本文引用格式

李贻珍 , 牛珂平 , 曹瑛瑛 , 王莹 , 文鹏程 , 乔海军 , 张卫兵 , 张忠明 . 不同温度条件下地衣芽孢杆菌凝乳酶的凝乳性能[J]. 食品与发酵工业, 2021 , 47(12) : 48 -54 . DOI: 10.13995/j.cnki.11-1802/ts.026747

Abstract

To determine the effect of temperature on the coagulant performance of chymosin from Bacillus licheniformis D3.11, the viscosity, turbidity, water retention, OD value, microstructure and rheological properties were analyzed during the coagulant process. Skimmed milk was used as the substrate and the commercial chymosin as control. The results showed that the viscosity of these two enzyme systems increased with the increase of temperature in milk curding, but decreased gradually when the temperature was higher. The turbidity increased significantly when the temperature increased from 30 ℃ to 45 ℃ (P<0.05). Rheological properties showed that commercial enzyme system can achieve higher energy storage modulus G' peak (269.01 Pa) than the B. licheniformis D3.11 rennet system (232.91 Pa). Also, a rise in curding temperature resulted in the fall of energy storage modulus G' in both enzyme systems, however the fall was more rapid in B. licheniformis system than in the commercial chymosin. The water holding capacity of both systems increased first and then decreased with the rise of temperature, and reached their maximum at 35 ℃. The whey OD value of both systems increased significantly with the increase of temperature (P<0.05), and the whey OD of B. licheniformis system was higher than that of the commercial chymosin. Confocal microscope screening of the microstructure showed that both systems had their best coagulant effect at 40 ℃. The results revealed that temperature significantly affected the milk clotting performance of chymosin from B. licheniformis D3.11. This study provides a theoretical basis for the application of chymosin from B. licheniformis.

参考文献

[1] AN Z G, HE X L, GAO W D, et al.Characteristics of miniature cheddar-type cheese made by microbial rennet from Bacillus amyloliquefaciens:A comparison with commercial calf rennet[J].Journal of Food Science, 2014, 79(2):M214-M221.
[2] 杭锋, 洪青, 王钦博, 等. 凝乳酶的研究进展[J]. 食品科学, 2016, 37(3):273-279.
HANG F, HONG Q, WANG Q B, et al. Advances in research on milk-clotting enzymes[J]. Food Science, 201637(3):273-279.
[3] 中华人民共和国卫生部. GB 5009.239—2016 食品安全国家标准 乳和乳制品酸度的测定[S].北京:中国农业出版社, 2016.
Ministry of Health of the People's Republic of China.GB 5009.239—2016 National food safety standard determination of acidity in milk and milk products[S].Beijing:China Agricultural Press, 2016.
[4] NEELAKANTAN S, MOHANTY A K, KAUSHIK J K.Production and use of microbial enzymes for dairy processing:A review[J].Current Science,1997, 77(1):143-148.
[5] DUTT K, MEGHWANSHI G K, GUPTA P, et al.Role of casein on induction and enhancement of production of a bacterial milk clotting protease from an indigenously isolated Bacillus subtilis[J].Letters in Applied Microbiology, 2008, 46(5):513-518.
[6] 普燕, 张富春. 干酪用牛凝乳酶替代品的研究进展[J]. 食品与发酵工业, 2015, 41(5):227-234.
PU Y, ZHANG F C. Research progress of the calf rennet substitutes for cheese-making[J]. Food and Fermentation Industries, 2015, 41(5):227-234.
[7] LI Y,LIANG S, ZHI D J, et al.Purification and characterization of Bacillus subtilis milk-clotting enzyme from Tibet Plateau and its potential use in yak dairy industry[J].European Food Research & Technology, 2012, 234(4):733-741.
[8] SOODAM K, GUINEE T P.The case for milk protein standardisation using membrane filtration for improving cheese consistency and quality[J].International Journal of Dairy Technology, 2018, 71(2):277-291.
[9] 张卫兵. 甘南牧区产凝乳酶细菌的筛选、产酶条件、酶学特性及应用研究[D]. 兰州: 甘肃农业大学, 2014.
ZHANG W B. Study on screening, conditions for enzyme production, enzymatic characteristics and application of rennet producing bacteria from Gannan pastoral area[D]. Lanzhou: Gansu Agricultural University, 2014.
[10] RAJESH K N, BHUSHAN B, PAL A, et al.Purification, physico-chemico-kinetic characterization and thermal inactivation thermodynamics of milk clotting enzyme from Bacillus subtilis MTCC 10422[J].LWT - Food Science and Technology, 2016, 65:652-660.
[11] AHMED S A, HELMY W A.Comparative evaluation of Bacillus licheniformis 5A5 and Aloe variegata milk-clotting enzymes[J].Brazilian Journal of Chemical Engineering, 2012,29(1):69-76.
[12] GUINEE T P, FENELON M A, MULHOLLAND E O, et al.The influence of milk pasteurization temperature and pH at curd milling on the composition, texture and maturation of reduced fat cheddar cheese[J].International Journal of Dairy Technology, 1998, 51(1):1-10.
[13] FOX P F, GUINEE T P, COGAN T M, et al. Enzymatic Coagulation of Milk[M].Boston: Springer US, 2016:185-229.
[14] 孔学民, 李丽丽, 白文娟, 等.Mozzarella干酪凝乳过程中理化特性及微观结构的变化[J].湖南农业大学学报(自然科学版), 2009, 35(5):549-553;557.
KONG X M, LI L L, BAI W J, et al.Changes of physico-chemical properties and microstructure of Mozzarella cheese during coagulation[J].Journal of Hunan Agricultural University (Natural Sciences), 2009, 35(5):549-553;557.
[15] MIZUNO R, LUCEY J A.Effects of emulsifying salts on the turbidity and calcium-phosphate-protein interactions in casein micelles[J].Journal of Dairy Science, 2005, 88(9):3 070-3 078.
[16] ZHANG Y, LI Y, WANG P J, et al.Rennet-induced coagulation properties of yak casein micelles:A comparison with cow casein micelles[J].Food Research International, 2017, 102:25-31.
[17] 李伟, 吴槟, 李金宝, 等. 钙试剂和温度对农家干酪品质及乳清OD值的影响[J]. 中国乳品工业, 2011, 39(8):25-27.
LI W, WU B, LI J B, et al. Study of the process optimization of cottage cheese[J]. China Dairy Industry, 2011, 39(8):25-27.
[18] LOPEZ C, CAMIER B, GASSI J Y.Development of the milk fat microstructure during the manufacture and ripening of Emmental cheese observed by confocal laser scanning microscopy[J].International Dairy Journal, 2007, 17(3):235-247.
[19] ZHAO Z, CORREDIG M.Influence of sodium chloride on the colloidal and rennet coagulation properties of concentrated casein micelle suspensions[J].Journal of Dairy Science, 2016, 99(8):6 036-6 045.
[20] 杨佐毅, 李理, 梁世中, 等. 新型大豆奶酪的研制及其水解特性[J]. 现代食品科技, 2005, 21(4):41-44.
YANG Z Y, LI L, LIANG S Z, et al. Studies on the starter and hydrolysis properties of a novel soybean cheese[J]. Modern Food Science and Technology, 2005, 21(4):41-44.
[21] 罗洁, 任发政, 王紫薇, 等. 干酪质构与风味控制技术研究进展[J]. 农业机械学报, 2016, 47(1):190-201;208.
LUO J, REN F Z, WANG Z W, et al. Advances in control technology of cheese quality and texture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1):190-201;208.
[22] LUCEY J A.The relationship between rheological parameters and whey separation in milk gels[J].Food Hydrocolloids, 2001, 15(4-6):603-608.
[23] 黄东旭, 姜亦超, 胡新新, 等. 以大豆为主要原料制备新鲜豆乳干酪的工艺研究[J]. 食品工业, 2017, 38(9):99-103.
HUANG D X, JIANG Y C, HU X X, et al. Research on the process technology of fresh soy-milk cheese using soybeans[J]. The Food Industry, 2017, 38(9):99-103.
[24] 谢晶, 杨茜. 生物抗氧化剂结合超高压技术对冷藏带鱼的保鲜效果[J]. 食品与发酵工业, 2015, 41(8):192-197.
XIE J, YANG X. Effects of natural antioxidants and high pressure treatment(HHP) on the quality characteristics of Trichiurus lepturus during refrigerated storage[J]. Food and Fermentation Industries, 2015, 41(8):192-197.
[25] 孙金威, 杨晓凤, 李启明, 等.稀奶油对农家干酪品质的影响[J].食品与发酵科技, 2019, 55(4):122-127.
SUN J W, YANG X F, LI Q M, et al.Effect of thin cream on the quality of cottage cheese[J].Food and Fermentation Sciences & Technology, 2019, 55(4):122-127.
[26] 雒亚洲, 高晶晶, 蒋阿宁. 天然干酪生产中凝乳形成的基本机理[J]. 农产品加工(学刊), 2008(9):10-11.
LUO Y Z, GAO J J, JIANG A N. The basic mechanism of the curd formation in natural cheese production[J]. Academic Periodical of Farm Products Processing, 2008(9):10-11.
[27] AMARO-HERNÁNDEZ J C, OLIVAS G I, ACOSTA-MUÑIZ C H, et al.Structure rearrangement during rennet coagulation of milk modifies curd density[J].Journal of Dairy Science, 2020, 103(4):3 088-3 094.
[28] BANSAL N, FOX P F, MCSWEENEY P L H.Aggregation of rennet-altered casein micelles at low temperatures[J].Journal of Agricultural & Food Chemistry, 2007, 55(8):3 120-3 126.
[29] CARLSON A, HILL G C, OLSON N F.The coagulation of milk with immobilized enzymes:A critical review[J].Enzyme & Microbial Technology, 1986, 8(11):642-650.
[30] 范金波, 侯宇, 黄训文, 等. 加工条件对生姜蛋白酶凝乳物化性质的影响[J]. 食品与发酵工业, 2014, 40(4):59-63.
FAN J B, HOU Y, HUANG X W, et al. The effect of processing conditions on the physicochemical properties of ginger protease curd[J]. Food and Fermentation Industries, 2014, 40(4):59-63.
文章导航

/