研究报告

敲除mig1基因对马克斯克鲁维酵母利用葡萄糖和木糖的影响

  • 李俊毅 ,
  • 王大红 ,
  • 苏佳杰 ,
  • 姬翔 ,
  • 李阳
展开
  • 1(河南科技大学 食品与生物工程学院,河南 洛阳, 471023)
    2(河南省食品微生物工程技术研究中心,河南 洛阳, 471023)
    3(河南科技大学,微生物资源开发与利用校级重点实验室,河南 洛阳,471023)
硕士研究生(王大红副教授和李阳讲师为共同通讯作者,E-mail:wangdahong2003@163.com;liyang@haust.edu.cn)

收稿日期: 2020-12-07

  修回日期: 2021-01-20

  网络出版日期: 2021-08-20

基金资助

河南省重点攻关项目(182102210282)

Effect of mig1 knockout on the utilization of glucose and xylose by Kluyveromyces marxianus

  • LI Junyi ,
  • WANG Dahong ,
  • SU Jiajie ,
  • JI Xiang ,
  • LI Yang
Expand
  • 1(College of Food and Bioengineering,Henan University of Science and Technology, Luoyang 471023, China)
    2(Henan Engineering Research Center of Food Microbiology, Luoyang 471023, China)
    3(Henan University of Science and Technology, Key Laboratory of Microbial Resources Exploitation and Utilization, Luoyang 471023, China)

Received date: 2020-12-07

  Revised date: 2021-01-20

  Online published: 2021-08-20

摘要

马克斯克鲁维酵母因其具有代谢木糖的能力而受到广泛关注。该文以具有完整木糖代谢通路的马克斯克鲁维酵母LJ0作为出发菌株,采用同源重组法敲除mig1基因,经筛选获得了敲除菌株LJ37。通过摇瓶发酵实验评价了敲除菌株的葡萄糖和木糖发酵能力,并通过RT-qPCR技术检测mig1基因的敲除对木糖代谢途径中3种关键基因表达量的影响。实验结果表明,mig1基因的敲除有效提高了菌株葡萄糖和木糖的代谢能力。以葡萄糖为底物时,敲除菌株生长量提升为野生型菌株的1.24倍,且具有利用葡萄糖进行高密度发酵的潜力。以木糖为唯一碳源时,敲除菌株的生长量提升了1.19倍;最大木糖利用速率提高到2.44 g/(L·h),为野生型的1.6倍;关键酶基因xyl1xdhxks1的相对表达量分别提升为野生型的2.25、2.43、2.00倍。

本文引用格式

李俊毅 , 王大红 , 苏佳杰 , 姬翔 , 李阳 . 敲除mig1基因对马克斯克鲁维酵母利用葡萄糖和木糖的影响[J]. 食品与发酵工业, 2021 , 47(14) : 51 -56 . DOI: 10.13995/j.cnki.11-1802/ts.026394

Abstract

Kluyveromyces marxianus has attracted wide attention because of its ability to metabolize xylose. In this study, the original strain was K. marxianus LJ0 with a whole xylose metabolism pathway, and the mig1 gene was knocked out by homologous recombination, and the knockout strain LJ37 was constructed. The glucose and xylose utilization ability of the knockout strain was evaluated by shaking flask fermentation experiments. RT-qPCR was used to estimate the relative expression of three key genes in xylose metabolic pathway. The results showed that the knockout strain LJ37 effectively improved the metabolic rates of glucose and xylose. The growth rate of strain LJ37 was 1.24 times that of the wild-type strain using glucose as substrate. The stain LJ37 could be applied to high-density fermentation in the future. With xylose as the sole carbon source, the growth rate of the knockout strain increased by 1.19 times, and the maximum utilization rate of xylose was enhanced to 2.44 g/(L·h), which was 1.6 times that of the wild-type strain. The RT-qPCR analysis showed that the relative expression level of genes xyl1, xdh1, and xks1 in knockout strain was 2.25, 2.43, and 2.00-fold higher than that of the wild type strain, respectively.

参考文献

[1] LANE M M, MORRISSEY J P.Kluyveromyces marxianus:A yeast emerging from its sister's shadow[J].Fungal Biology Reviews, 2010, 24(1-2):17-26.
[2] 莫文娟, 郭超, 吕红.马克斯克鲁维酵母的遗传与生理特征[J].中国科学:生命科学, 2016, 46(4):413-419.
MO W J, GUO C, LYU H.Review of Kluyveromyces marxianus' genetic and physiological features[J].Scientia Sinica (Vitae), 2016, 46(4):413-419.
[3] 岳寿松, 边斐, 张燕, 等.马克斯克鲁维酵母菌的分离鉴定与所产乳糖酶酶学性能研究[J].山东农业科学, 2018, 50(11):66-70;101.
YUE S S, BIAN F,ZHANG Y, et al.Isolation and identification of Kluyveromyces marxianus strain and properties of its product of β-galactosidase[J].Shandong Agricultural Sciences, 2018, 50(11):66-70;101.
[4] 刘梦. 马克斯克鲁维酵母发酵黄酒特性研究及木糖转化工程菌株的构建[D].武汉:武汉轻工大学, 2017.
LIU M.Characteristics of Chinese red wine fermented by Kluyveromyces marxianus and construction of xylose metabolic engineered strains[D].Wuhan:Wuhan Polytechnic University, 2017.
[5] 侯胜博. 马克斯克鲁维酵母的戊糖发酵[D].大连:大连理工大学, 2017.
HOU S B.Pentose fermentation of Kluyveromyces marxianus[D].Dalian:Dalian University of Technology, 2017.
[6] 王冬梅, 洪泂.在耐热的马克斯克鲁维酵母中构建微生物细胞工厂[J].生物学杂志, 2020, 37(1):1-10.
WANG D M, HONG J.Constructing microbial cell factory with thermo-tolerant yeast Kluyveromyces marxianus[J].Journal of Biology, 2020, 37(1):1-10.
[7] 陈成, 汪洪涛, 陈宝宏, 等.马克斯克鲁维酵母发酵产β-葡聚糖工艺优化[J].食品工业, 2015, 36(1):133-136.
CHEN C, WANG H T, CHEN B H, et al.Optimization of production process of β-glucans from Kluyveromyces marxianus[J].The Food Industry, 2015, 36(1):133-136.
[8] 高教琪, 韩锡铜, 孔亮, 等.马克斯克鲁维酵母在工业生物技术中的应用[J].中国生物工程杂志, 2014, 34(2):109-117.
GAO J Q, HAN X T, KONG L, et al.Application progress of Kluyveromyces marxianus in the industrial biotechnology[J].China Biotechnology, 2014, 34(2):109-117.
[9] 侯胜博, 冯华良, 高教琪, 等.马克斯克鲁维酵母的木糖和阿拉伯糖发酵[J].生物工程学报, 2017, 33(6):923-935.
HOU S B, FENG H L, GAO J Q, et al.Fermentations of xylose and arabinose by Kluyveromyces marxianus[J].Chinese Journal of Biotechnology, 2017, 33(6):923-935.
[10] 牛明福, 李亚恒, 陈金帅, 等.马克斯克鲁维酵母生物转化2-苯乙醇工艺优化及耐高温特性分析[J].食品与发酵工业, 2018, 44(2):15-20.
NIU M F, LI Y H, CHEN J S, et al.Optimization and characterization of 2-phenylethanol bioconversion by thermotolerant yeast Kluyveromyces marxianus[J].Food and Fermentation Industries, 2018, 44(2):15-20.
[11] 卢敏. 工程改造马克斯克鲁维酵母进行混合糖共利用[D].合肥:中国科学技术大学, 2015.
LU M.Genetically engineered Kluyveromyces marxianus for mix-sugar utilization[D].Hefei:University of Science and Technology of China, 2015.
[12] 池振明, 马再超.酵母菌诱导和阻遏分子机理的研究进展[J].中国海洋大学学报(自然科学版), 2013, 43(1):47-55.
CHI Z M, MA Z C.Research progress in the molecular mechanism of induction and repression of yeast[J].Periodical of Ocean University of China, 2013, 43(1):47-55.
[13] SCHMIDT G W, WELKENHUYSEN N, YE T, et al.Mig1 localization exhibits biphasic behavior which is controlled by both metabolic and regulatory roles of the sugar kinases[J].Molecular Genetics and Genomics, 2020, 295(6):1 489-1 500.
[14] 仉英, 田月如, 艾芙琪,等.同源重组敲除临床肺炎克雷伯菌质粒blaKPC-2基因[J].检验医学, 2014, 29(6):603-606.
ZHANG Y, TIAN Y R,AI F Q, et al.Homologous recombination knockout blaKPC-2 gene in clinical isolates of Klebsiella pneumonia[J].Laboratory Medicine, 2014, 29(6):603-606.
[15] 武有聪, 孟媛媛, 丁百兴, 等.以质粒为基础的同源重组技术在葡萄球菌基因敲除中的应用[J].中国人兽共患病学报, 2019, 35(7):581-586.
WU Y C, MENG Y Y, DING B X, et al.Application of plasmid-based allelic replacement in the gene deletion of Staphylococcus[J].Chinese Journal of Zoonoses, 2019, 35(7):581-586.
[16] 朱曼丽. 利用重叠延伸PCR技术在酿酒酵母中构建木糖代谢相关基因[D].天津:天津大学, 2009.
ZHU M L.Construction of genes related to xylose metabolism in Saccharomyces cerevisiae using overlap extension PCR[D].Tianjin:Tianjin University, 2009.
[17] 张佳. 通过基因工程改造马克思克鲁维酵母实现高温高产木糖醇和乙醇[D].合肥:中国科学技术大学, 2015.
ZHANG J.Xylitol and ethanol production at high temperature by engineered Kluyveromyces marxianus[D].Hefei:University of Science and Technology of China, 2015.
[18] 牛晓静, 陈天朝, 鲁静, 等.槐角中还原糖的含量测定[J].中医药信息, 2019, 36(6):18-21.
NIU X J, CHEN T C, LU J, et al.Content determination of reducing sugar in Fructus sophorae[J].Information on Traditional Chinese Medicine, 2019, 36(6):18-21.
[19] ZHANG Y, XIAO D G, ZHANG C Y, et al.Effect of mig1 gene deletion on glucose repression in baker's yeast[J].Advanced Materials Research, 2011, 396-398:1 531-1 535.
[20] ALIPOURFARD I,DATUKISHVILI N,BAKHTIYARI S, et al.MIG1 glucose repression in metabolic processes of Saccharomyces cerevisiae:Genetics to metabolic engineering[J].Avicenna Journal of Medical Biotechnology, 2019, 11(3):215-220.
[21] ALIPOURFARD I, DATUKISHVILI N, BAKHTIYARI S, et al.Saccharomyces cerevisiae, key role of MIG1 gene in metabolic switching:Putative fermentation/oxidation[J].Journal of Biological Regulators and Homeostatic Agents, 2018, 32(3):649-654.
[22] XU J R, ZHAO X Q, LIU C G, et al.Improving xylose utilization of Saccharomyces cerevisiae by expressing the mig1 mutant from the self-flocculating yeast SPSC01[J].Protein and Peptide Letters, 2018, 25(2):202-207.
[23] 王亮, 胡曼, 王江月, 等.马克斯克鲁维酵母高密度发酵条件的优化研究[J].食品工业科技, 2017, 38(17):111-118;124.
WANG L, HU M, WANG J Y, et al.Optimization of high density fermentation conditions of Kluyveromyces marxianus[J].Science and Technology of Food Industry, 2017, 38(17):111-118;124.
[24] 魏闪. 酿酒酵母葡萄糖后继效应相关的木糖代谢效率决定性因子研究[D].济南:山东大学, 2019.
WEI S.Study on the xylose metabolic efficiency decisive factors relevant to the post-glucose-effect in Saccharomyces cerevisiae[D].Jinan:Shandong University, 2019.
[25] 蔡艳青, 齐显尼, 齐奇,等.敲除MIG1SNF1基因对酿酒酵母共利用葡萄糖和木糖的影响[J].生物工程学报, 2018, 34(1):54-67.
CAI Y Q, QI X N, QI Q, et al.Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae[J].Chinese Journal of Biotechnology, 2018, 34(1):54-67.
文章导航

/