[1] LANE M M, MORRISSEY J P.Kluyveromyces marxianus:A yeast emerging from its sister's shadow[J].Fungal Biology Reviews, 2010, 24(1-2):17-26.
[2] 莫文娟, 郭超, 吕红.马克斯克鲁维酵母的遗传与生理特征[J].中国科学:生命科学, 2016, 46(4):413-419.
MO W J, GUO C, LYU H.Review of Kluyveromyces marxianus' genetic and physiological features[J].Scientia Sinica (Vitae), 2016, 46(4):413-419.
[3] 岳寿松, 边斐, 张燕, 等.马克斯克鲁维酵母菌的分离鉴定与所产乳糖酶酶学性能研究[J].山东农业科学, 2018, 50(11):66-70;101.
YUE S S, BIAN F,ZHANG Y, et al.Isolation and identification of Kluyveromyces marxianus strain and properties of its product of β-galactosidase[J].Shandong Agricultural Sciences, 2018, 50(11):66-70;101.
[4] 刘梦. 马克斯克鲁维酵母发酵黄酒特性研究及木糖转化工程菌株的构建[D].武汉:武汉轻工大学, 2017.
LIU M.Characteristics of Chinese red wine fermented by Kluyveromyces marxianus and construction of xylose metabolic engineered strains[D].Wuhan:Wuhan Polytechnic University, 2017.
[5] 侯胜博. 马克斯克鲁维酵母的戊糖发酵[D].大连:大连理工大学, 2017.
HOU S B.Pentose fermentation of Kluyveromyces marxianus[D].Dalian:Dalian University of Technology, 2017.
[6] 王冬梅, 洪泂.在耐热的马克斯克鲁维酵母中构建微生物细胞工厂[J].生物学杂志, 2020, 37(1):1-10.
WANG D M, HONG J.Constructing microbial cell factory with thermo-tolerant yeast Kluyveromyces marxianus[J].Journal of Biology, 2020, 37(1):1-10.
[7] 陈成, 汪洪涛, 陈宝宏, 等.马克斯克鲁维酵母发酵产β-葡聚糖工艺优化[J].食品工业, 2015, 36(1):133-136.
CHEN C, WANG H T, CHEN B H, et al.Optimization of production process of β-glucans from Kluyveromyces marxianus[J].The Food Industry, 2015, 36(1):133-136.
[8] 高教琪, 韩锡铜, 孔亮, 等.马克斯克鲁维酵母在工业生物技术中的应用[J].中国生物工程杂志, 2014, 34(2):109-117.
GAO J Q, HAN X T, KONG L, et al.Application progress of Kluyveromyces marxianus in the industrial biotechnology[J].China Biotechnology, 2014, 34(2):109-117.
[9] 侯胜博, 冯华良, 高教琪, 等.马克斯克鲁维酵母的木糖和阿拉伯糖发酵[J].生物工程学报, 2017, 33(6):923-935.
HOU S B, FENG H L, GAO J Q, et al.Fermentations of xylose and arabinose by Kluyveromyces marxianus[J].Chinese Journal of Biotechnology, 2017, 33(6):923-935.
[10] 牛明福, 李亚恒, 陈金帅, 等.马克斯克鲁维酵母生物转化2-苯乙醇工艺优化及耐高温特性分析[J].食品与发酵工业, 2018, 44(2):15-20.
NIU M F, LI Y H, CHEN J S, et al.Optimization and characterization of 2-phenylethanol bioconversion by thermotolerant yeast Kluyveromyces marxianus[J].Food and Fermentation Industries, 2018, 44(2):15-20.
[11] 卢敏. 工程改造马克斯克鲁维酵母进行混合糖共利用[D].合肥:中国科学技术大学, 2015.
LU M.Genetically engineered Kluyveromyces marxianus for mix-sugar utilization[D].Hefei:University of Science and Technology of China, 2015.
[12] 池振明, 马再超.酵母菌诱导和阻遏分子机理的研究进展[J].中国海洋大学学报(自然科学版), 2013, 43(1):47-55.
CHI Z M, MA Z C.Research progress in the molecular mechanism of induction and repression of yeast[J].Periodical of Ocean University of China, 2013, 43(1):47-55.
[13] SCHMIDT G W, WELKENHUYSEN N, YE T, et al.Mig1 localization exhibits biphasic behavior which is controlled by both metabolic and regulatory roles of the sugar kinases[J].Molecular Genetics and Genomics, 2020, 295(6):1 489-1 500.
[14] 仉英, 田月如, 艾芙琪,等.同源重组敲除临床肺炎克雷伯菌质粒blaKPC-2基因[J].检验医学, 2014, 29(6):603-606.
ZHANG Y, TIAN Y R,AI F Q, et al.Homologous recombination knockout blaKPC-2 gene in clinical isolates of Klebsiella pneumonia[J].Laboratory Medicine, 2014, 29(6):603-606.
[15] 武有聪, 孟媛媛, 丁百兴, 等.以质粒为基础的同源重组技术在葡萄球菌基因敲除中的应用[J].中国人兽共患病学报, 2019, 35(7):581-586.
WU Y C, MENG Y Y, DING B X, et al.Application of plasmid-based allelic replacement in the gene deletion of Staphylococcus[J].Chinese Journal of Zoonoses, 2019, 35(7):581-586.
[16] 朱曼丽. 利用重叠延伸PCR技术在酿酒酵母中构建木糖代谢相关基因[D].天津:天津大学, 2009.
ZHU M L.Construction of genes related to xylose metabolism in Saccharomyces cerevisiae using overlap extension PCR[D].Tianjin:Tianjin University, 2009.
[17] 张佳. 通过基因工程改造马克思克鲁维酵母实现高温高产木糖醇和乙醇[D].合肥:中国科学技术大学, 2015.
ZHANG J.Xylitol and ethanol production at high temperature by engineered Kluyveromyces marxianus[D].Hefei:University of Science and Technology of China, 2015.
[18] 牛晓静, 陈天朝, 鲁静, 等.槐角中还原糖的含量测定[J].中医药信息, 2019, 36(6):18-21.
NIU X J, CHEN T C, LU J, et al.Content determination of reducing sugar in Fructus sophorae[J].Information on Traditional Chinese Medicine, 2019, 36(6):18-21.
[19] ZHANG Y, XIAO D G, ZHANG C Y, et al.Effect of mig1 gene deletion on glucose repression in baker's yeast[J].Advanced Materials Research, 2011, 396-398:1 531-1 535.
[20] ALIPOURFARD I,DATUKISHVILI N,BAKHTIYARI S, et al.MIG1 glucose repression in metabolic processes of Saccharomyces cerevisiae:Genetics to metabolic engineering[J].Avicenna Journal of Medical Biotechnology, 2019, 11(3):215-220.
[21] ALIPOURFARD I, DATUKISHVILI N, BAKHTIYARI S, et al.Saccharomyces cerevisiae, key role of MIG1 gene in metabolic switching:Putative fermentation/oxidation[J].Journal of Biological Regulators and Homeostatic Agents, 2018, 32(3):649-654.
[22] XU J R, ZHAO X Q, LIU C G, et al.Improving xylose utilization of Saccharomyces cerevisiae by expressing the mig1 mutant from the self-flocculating yeast SPSC01[J].Protein and Peptide Letters, 2018, 25(2):202-207.
[23] 王亮, 胡曼, 王江月, 等.马克斯克鲁维酵母高密度发酵条件的优化研究[J].食品工业科技, 2017, 38(17):111-118;124.
WANG L, HU M, WANG J Y, et al.Optimization of high density fermentation conditions of Kluyveromyces marxianus[J].Science and Technology of Food Industry, 2017, 38(17):111-118;124.
[24] 魏闪. 酿酒酵母葡萄糖后继效应相关的木糖代谢效率决定性因子研究[D].济南:山东大学, 2019.
WEI S.Study on the xylose metabolic efficiency decisive factors relevant to the post-glucose-effect in Saccharomyces cerevisiae[D].Jinan:Shandong University, 2019.
[25] 蔡艳青, 齐显尼, 齐奇,等.敲除MIG1和SNF1基因对酿酒酵母共利用葡萄糖和木糖的影响[J].生物工程学报, 2018, 34(1):54-67.
CAI Y Q, QI X N, QI Q, et al.Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae[J].Chinese Journal of Biotechnology, 2018, 34(1):54-67.