研究报告

微孔板筛选酿酒酵母乙醇发酵相关性状的因素探究

  • 余鸿飞 ,
  • 姜娇 ,
  • 董琦楠 ,
  • 黄蓉 ,
  • 商华 ,
  • 叶冬青 ,
  • 刘延琳
展开
  • 1(西北农林科技大学 葡萄酒学院,陕西 杨凌,712100)
    2(中国葡萄酒产业技术研究院,宁夏 银川,750021)
    3(中粮长城葡萄酒(宁夏)有限公司,宁夏 永宁,750100)
    4(广西壮族自治区农业科学研究院农产品加工研究所,广西 南宁,530007)
余鸿飞(硕士研究生)和姜娇(博士研究生)为共同第一作者(叶冬青副研究员和刘延琳教授为共同通讯作者,E-mail:yedongqing@nwafu.edu.cn;yanlinliu@nwsuaf.edu.cn)

收稿日期: 2021-01-22

  修回日期: 2021-03-08

  网络出版日期: 2021-11-18

基金资助

国家重点研发计划项目(2019YFD1002500);宁夏回族自治区重大研发计划项目(2020BCF01003);国家现代农业(葡萄)产业技术体系建设专项(CARS-29-jg-03);西北农林科技大学博士科研启动费(Z1090219008)

Factors affecting the selection of Saccharomyces cerevisiae with alcoholic fermentation related phenotypes via microtiter plates

  • YU Hongfei ,
  • JIANG Jiao ,
  • DONG Qinan ,
  • HUANG Rong ,
  • SHANG Hua ,
  • YE Dongqing ,
  • LIU Yanlin
Expand
  • 1(College of Enology, Northwest A&F University, Yangling 712100, China)
    2(China Wine Industry Technology Institute, Yinchuan 750021, China)
    3(COFCO Great Wall Wine (NingXia) Co.Ltd., Yongning 750100, China)
    4(Institute of Agro-Products Processing Science and Technology,Guangxi Academy of Agricultural Sciences, Nanning 530007, China)

Received date: 2021-01-22

  Revised date: 2021-03-08

  Online published: 2021-11-18

摘要

基于微孔板(microtiter plates,MTP)的酿酒酵母高通量筛选操作简便,节约耗材,筛选效率高,是替代传统锥形瓶静置筛选的首选方案。但由于其培养体积小,极易受其他因素影响,因此亟需探究影响MTP筛选的因素并优化筛选条件,以进一步减小误差,使结果更为可靠。该研究以多株不同发酵特性的酿酒酵母为试验材料,探究了菌株特异性、装液量及覆膜条件3个因素对酿酒酵母乙醇发酵相关性状筛选的影响。结果表明,覆膜条件是影响筛选结果的最主要因素,覆膜条件与装液量对残糖、乙醇、甘油及部分有机酸的影响显著,其影响甚至超过菌株特异性。严格厌氧覆膜、24孔板、2 mL装液量组与锥形瓶静置组在残糖、乙醇、甘油及有机酸产量上均无显著差异,具有在实际操作中替代锥形瓶静置筛选具有特定性状酿酒酵母的良好潜力。

本文引用格式

余鸿飞 , 姜娇 , 董琦楠 , 黄蓉 , 商华 , 叶冬青 , 刘延琳 . 微孔板筛选酿酒酵母乙醇发酵相关性状的因素探究[J]. 食品与发酵工业, 2021 , 47(20) : 8 -14 . DOI: 10.13995/j.cnki.11-1802/ts.026851

Abstract

Microtiter plate (MTP) based high through-put screening of Saccharomyces cerevisiae is the most preferred alternative to traditional conical flask static screening, since MTP method is easy operating, consumables saving, and of high efficiency. However, due to the small culture volume, application of MTP to screen yeast isolates can be easily affected by many factors. Thus, evaluation of MTP configuration is a necessity to allow more accurate yeast selection. In this study, multiple S. cerevisiae strains with varied fermentation characteristics, liquid volumes, and sealing membranes were used to assess their impact on yeast selection. Results showed that coating membrane was the most important factor affecting the screening results. Compared with strain specificity, coating membrane and liquid volume had more significant impacts on residual sugar and the yield of ethanol, glycerol, and principal organic acids. No significant differences were observed in yeast metabolites between Erlenmeyer flask ferments and 2 mL ferments in 24-well plates sealed with unbreathable membranes. This indicated that MTP method had great potential to replace conical flask static screening of S. cerevisiae strains with certain alcoholic fermentation related phenotypes.

参考文献

[1] 刘宁. 本土酿酒酵母对葡萄酒质量的影响及优良菌株的筛选[D].杨凌:西北农林科技大学, 2015.
LIU N.Effect of indigenous Saccharomyces cerevisiae strains on wine quality and strain selection[D].Yangling:Northwest A & F University, 2015.
[2] 李华. 葡萄酒品尝学[M].北京:科学出版社, 2010.
LI H.Wine Tasting[M].Beijing:Science Press, 2010.
[3] FAN S Q, CHEN S P, TANG X Y, et al.Kinetic model of continuous ethanol fermentation in closed-circulating process with pervaporation membrane bioreactor by Saccharomyces cerevisiae[J].Bioresource Technology, 2015, 177:169-175.
[4] 袁林, 赵红玉, 李华, 等.公酿一号混酿葡萄酒降酸效果及多酚组分评价[J].食品与发酵工业, 2019, 45(23):66-72.
YUAN L, ZHAO H Y, LI H, et al.Evaluation of the effect on the deacidification and polyphenol component of Gongniang No.1 blend wine[J].Food and Fermentation Industries, 2019, 45(23):66-72.
[5] 孙杨, 聂简琪, 白仲虎, 等.高通量培养技术在生物过程研发中的应用进展[J].生物产业技术, 2015(1):24-31.
SUN Y, NIE J Q, BAI Z H, et al.Development of high-throughput culture technology in biological process research and application[J].Biotechnology and Business, 2015(1):24-31.
[6] 崔金明, 刘陈立.合成生物学中的高通量筛选与测量技术[J].中国细胞生物学学报, 2019, 41(11):2 084-2 090.
CUI J M, LIU C L.High-throughput screening and measurement techniques in synthetic biology[J].Chinese Journal of Cell Biology, 2019, 41(11):2 083-2 090.
[7] 郭玉蕾, 唐亮, 孙瑞强,等.高通量微型生物反应器的研究进展[J].中国生物工程杂志, 2018, 38(8):69-75.
GUO Y L, TANG L, SUN R Q, et al.High-throughput micro bioreactor development for biopharmaceuticals[J].China Biotechnology, 2018, 38(8):69-75.
[8] HUANG Y M, KWIATKOWSKI C.The role of high-throughput mini-bioreactors in process development and process optimization for mammalian cell culture[J].Pharmaceutical Bioprocessing, 2015, 3(6):397-410.
[9] LE PAGE G, GUNNARSSON L, SNAPE J,et al.Development and application of a microplate assay for toxicity testing on aquatic cyanobacteria[J].Environmental Toxicology and Chemistry,2020, 39(3):705-720.
[10] CORNEL A M, SZANTO C L, VAN TIL N, et al.A “no-touch” antibody-staining method of adherent cells for high-throughput flow cytometry in 384-well microplate format for cell-based drug library screening[J].Journal of Quantitative Cell Science,2020, 97(8):845-851.
[11] LICCIOLI T, TRAN T M T,COZZOLINO D, et al.Microvinification:How small can we go?[J].Applied Microbiology and Biotechnology, 2011, 89:1 621-1 628.
[12] 程艳, 堵国成, 周景文,等.高通量筛选诱变菌株降低黄酒发酵氨基甲酸乙酯前体积累[J].微生物学报, 2017, 57(10):1 517-1 526.
CHENG Y, DU G C, ZHOU J W, et al.High-throughput screening of mutant strain to reduce the accumulation of ethyl carbamate precursor in rice wine fermentation[J].Acta Microbiologica Sinica, 2017, 57(10):1 517-1 526.
[13] 谭俊. 基于多尺度创新原理的工业微生物高通量筛选平台构建及应用研究[D].上海:华东理工大学, 2013.
TAN J.Construction of high-throughput screening platform based on multi-scale study approach for high yield industry microorganism and its practical applications[D].Shanghai:East China University of Science and Technology, 2013.
[14] 李光, 唐小玲, 韦璇,等.Surfactin高产菌株的等离子体诱变及其高通量筛选[J].食品与发酵工业.2017, 43(2):67-72.
LI G, TANG X L, WEI X, et al.High-throughput screening of Bacillus subtilis mutants with high yield of surfactinby ARTP[J].Food and Fermentation Industries, 2017, 43(2):67-72.
[15] KENSY F, ZIMMERMANN H F, KNABBEN I, et al.Oxygen transfer phenomena in 48-well microtiter plates:Determination by optical monitoring of sulfite oxidation and verification by real-time measurement during microbial growth[J].Biotechnology and Bioengineering, 2005, 89(6):698-708.
[16] KWONG M M Y, LEE J W,SAMIAN M R, et al.Comparison of microplate-and bottle-based methods to age yeast for chronological life span assays[J].Journal of Microbiological Methods, 2019,167:105743.
[17] 刘延琳, 李华.mleA基因在酿酒酵母中的整合型表达[J].中国农业科学, 2009, 42(4):1 372-1 377.
LIU Y L, LI H.Integrated expression of mleA gene in Saccharomyces cerevisiae[J].Scientia Agricultura Sinica, 2009, 42(4):1 372-1 377.
[18] BELY M,SABLAYROLLES J M,BARRE P.Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions[J].Journal of Fermentation and Bioengineering, 1990, 70(4):246-252.
[19] 王春晓, 江璐, 刘延琳.DNS法监控葡萄酒发酵进程的应用研究[J].中国酿造, 2012, 31(9):24-27.
WANG C X, JIANG L, LIU Y L.Application study on monitoring wine fermentation process by DNS method[J].China Brewing, 2012, 31(9):24-27.
[20] 杜青, 刘延琳, 贾鹤,等.基于生物量产率的低产乙醇酿酒酵母的筛选[J].中国食品学报, 2018, 18(4):30-36.
DU Q, LIU Y L, JIA H et al.Screening of low-ethanol Saccharomyces cerevisiae based on the biomass yield[J].Journal of Chinese Institute of Food Science and Technology, 2018, 18(4):30-36.
[21] WANG Y Q, YE D Q, LIU P T, et al.Synergistic effects of branched-chain amino acids and phenylalanine addition on major volatile compounds in wine during alcoholic fermentation[J].South African Journal of Enology and Viticulture, 2016, 37(2):169-175.
[22] 周剑, 江红, 林风.基于深孔板培养高通量筛选rakicidin B1高产菌的研究[J].中国抗生素杂志, 2019, 44(12):1 352-1 355.
ZHOU J, JIANG H, LIN F.Studies on high throughput screening for high rakicidin B1-producing strains with deep-well plates[J].Chinese Journal of Antibiotics, 2019, 44(12):1 352-1 355.
[23] 朱旭东. 基于微孔板技术及微流控技术的工业微生物高通量筛选平台构建及应用研究[D].上海:华东理工大学, 2017.
ZHU X D.Construction and application of high-throughput screening platforms for development of industrial microorganism based on microplate technology and microfluidic technology[D].Shanghai:East China University of Science and Technology, 2017.
[24] FLITSCH D,KRABBE S,LADNER T,et al.Respiration activity monitoring system for any individual well of a 48-well microtiter plate[J].Journal of Biological Engineering,2016, 10(1):14.
[25] WÖLCKE J,ULLMANN D.Miniaturized HTS technologies-UTS[J].Drug Discovery Services Screening Operations, 2001, 6(12):637-646.
[26] 蒋凯, 伍时华, 赵东玲, 等.通气量对酿酒酵母GGSF16高浓度乙醇发酵的影响[J].食品与发酵工业, 2015, 41(5):35-40.
JIANG K, WU S H, ZHAO D L,et al.Effect of aeration on very high gravity ethanol fermentation using Saccharomyces cerevisiae GGSF16[J].Food and Fermentation Industries, 2015, 41(5):35-40.
[27] 喻扬, 王永红, 储炬, 等.控制发酵过程氧化还原电位优化酿酒酵母乙醇生产[J].生物工程学报, 2007, 23(5):878-884.
YU Y, WANG Y H, CHU J, et al.The influence of controlling redox potential on ethanol production by Saccharomyces cerevisiae[J].Chinese Journal of Biotechnology, 2007,23(5):878-884.
[28] FORSTER J, FAMILI I, FU P, et al.Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network[J].Genome Research, 2003, 13(2):244-253.
[29] 郝学密, 杜斌, 刘黎阳, 等.ORP对酿酒酵母在木质纤维素水解液抑制物中发酵的影响[J].化工学报, 2015, 66(3):1 066-1 071.
HAO X M, DU B, LIU L Y, et al.Effect of ORP regulation on yeast fermentation with inhibitors of lignocellulose hydrolysate[J].CIESC Journal, 2015, 66(3):1 066-1 071.
文章导航

/