该文研究山药多糖对丙烯酰胺(acrylamide,AM)诱导的巨噬细胞氧化损伤的保护作用。以AM诱导小鼠巨噬细胞(RAW264.7)损伤,山药多糖进行保护,检测山药多糖对细胞增殖、吞噬活力以及氧化应激的影响;并构建生物大分子(蛋白、脂类、DNA)氧化损伤模型,评价山药多糖对生物大分子的保护作用。结果表明,与正常对照组相比,不同质量浓度的山药多糖对细胞增殖影响无显著性差异。与诱导组(AM)相比,不同浓度的山药多糖能显著促进细胞生长和提高细胞吞噬活力。山药多糖预处理能有效抑制细胞活性氧产生,减少丙二醛累积,提高细胞超氧化物歧化酶活性。此外,山药多糖对生物大分子也具有良好的保护作用。山药多糖可以通过提高细胞抗氧化能力,抑制细胞的氧化应激,抑制生物大分子氧化损伤,从而有效保护丙烯酰胺诱导的巨噬细胞氧化损伤。该研究为控制丙烯酰胺毒性及山药多糖的开发利用提供理论依据。
The aim of this study was to investigate the protective effect of Rhizoma dioscoreae polysaccharides on acrylamide (AM)-induced oxidative damage in mouse macrophages. AM-induced macrophage (RAW264.7) injury was first established, and Rhizoma dioscoreae polysaccharides were used to protect it. The effects of Rhizoma dioscoreae polysaccharides on cell proliferation, phagocytic activity and oxidative stress were detected. Additionally, the oxidative models were applied to evaluate the protective effect of yam polysaccharides on biological macromolecules (protein, lipid, DNA). The results showed that different concentrations of polysaccharides had no significant effect on cell proliferation, compared with the normal control group. Compared with the induction (AM) group, Rhizoma dioscoreae polysaccharides could significantly promote cell growth and improve phagocytic activity. Polysaccharide pretreatment could effectively inhibit the production of ROS, reduce the accumulation of MDA and enhance the activity of SOD. In addition, Rhizoma dioscoreae polysaccharides also exerted a good protective effect on biological macromolecules. Rhizoma dioscoreae polysaccharides could effectively protect macrophages from AM-induced oxidative damage by improving cell antioxidant capacity, inhibiting cell oxidative stress and macro-molecule oxidation. This study provides a theoretical basis for controlling the toxicity of acrylamide and for the potential development and utilization of Rhizoma dioscoreae polysaccharides.
[1] PUNDIR C S, YADAV N, CHHILLAR A K.Occurrence, synthesis, toxicity and detection methods for acrylamide determination in processed foods with special reference to biosensors:A review[J].Trends in Food Science & Technology, 2019, 85:211-225.
[2] 解瑞丽, 周启星.丙烯酰胺的环境暴露、生态行为与毒理效应研究进展[J].生态学杂志, 2013, 32(5):1 347-1 354.
XIE R L, ZHOU Q X.Environmental exposure, ecological behavior, and toxicological effect of acrylamide:A review[J].Chinese Journal of Ecology, 2013, 32(5):1 347-1 354.
[3] MATOSO V, BARGI-SOUZA P, IVANSKI F, et al.Acrylamide:A review about its toxic effects in the light of developmental origin of health and disease (DOHaD) concept[J].Food Chemistry, 2019, 283:422-430.
[4] HUANG M M, JIAO J J, WANG J, et al.Exposure to acrylamide induces cardiac developmental toxicity in zebrafish during cardiogenesis[J].Environmental Pollution, 2018, 234:656-666.
[5] 方瑾. 丙烯酰胺及苦瓜提取物对小鼠的免疫毒性研究[D].北京:中国疾病预防控制中心, 2014.
FANG J.Immunotoxicological evaluation of acrylamide and Momordica charantia extract[D].Beijing:Chinese Doctoral Dissertations Full-text Database, 2014.
[6] ZAMANI E, SHAKI F, ABEDIANKENARI S, et al.Acrylamide induces immunotoxicity through reactive oxygen species production and caspase-dependent apoptosis in mice splenocytes via the mitochondria-dependent signaling pathways[J].Biomedicine & Pharmacotherapy, 2017, 94:523-530.
[7] KOMOIKE Y, NOMURA-KOMOIKE K, MATSUOKA M.Intake of acrylamide at the dietary relevant concentration causes splenic toxicity in adult zebrafish[J].Environmental Research, 2020, 189:109977.
[8] GUO J, YU D D, LYU N, et al.Relationships between acrylamide and glycidamide hemoglobin adduct levels and allergy-related outcomes in general US population, NHANES 2005—2006[J].Environmental Pollution, 2017, 225:506-513.
[9] 吴鑫平, 李佳, 郝艳艳, 等.植物多糖对巨噬细胞的调控及机制研究进展[J].细胞与分子免疫学杂志, 2019, 35(5):473-478.
WU X P, LI J, HAO Y Y, et al.Research progress in the regulation and mechanism of plant polysaccharides on macrophages[J].Chinese Journal of Cellular and Molecular Immunology, 2019, 35(5):473-478.
[10] YANG W F, WANG Y, LI X P, et al.Purification and structural characterization of Chinese yam polysaccharide and its activities[J].Carbohydrate Polymers, 2015, 117:1 021-1 027.
[11] LI Q, LI W Z, GAO Q Y, et al.Hypoglycemic effect of Chinese yam (Dioscorea opposita rhizoma) polysaccharide in different structure and molecular weight[J].Journal of Food Science, 2017, 82(10):2 487-2 494.
[12] CHENG Z Y, HU M, TAO J, et al.The protective effects of Chinese yam polysaccharide against obesity-induced insulin resistance[J].Journal of Functional Foods, 2019, 55:238-247.
[13] YU L, ZHANG J, JIAO J, et al.Effect of nano yam polysaccharide on the blood glucose and blood lipid in rats[J].Pakistan Journal of Pharmaceutical Sciences, 2020, 33(1):481-487.
[14] XUE H Y, LI J R, LIU Y G, et al.Optimization of the ultrafiltration-assisted extraction of Chinese yam polysaccharide using response surface methodology and its biological activity[J].International Journal of Biological Macromolecules, 2019, 121:1 186-1 193.
[15] JU Y, XUE Y, HUANG J L, et al.Antioxidant Chinese yam polysaccharides and its pro-proliferative effect on endometrial epithelial cells[J].International Journal of Biological Macromolecules, 2014, 66:81-85.
[16] LI M, CHEN L X, CHEN S R, et al.Non-starch polysaccharide from Chinese yam activated RAW 264.7 macrophages through the Toll-like receptor 4 (TLR4)-NF-κB signaling pathway[J].Journal of Functional Foods, 2017, 37:491-500.
[17] WANG J Y, YUAN L, CHENG B, et al.Antioxidant capacity and antitumor activity of Fructus Kochiae extracts[J].Quality Assurance and Safety of Crops & Foods, 2014, 6(4):383-393.
[18] 林颖韬, 陈伶莉, 胡雪峰.免疫细胞的种类、功能及相关疾病概述[J].生物学教学, 2020, 45(4):77-80.
LIN Y T, CHEN L L, HU X F.The types, functions and related diseases of immune cells:A review [J].Biology Teaching, 2020, 45(4):77-80.
[19] NAN B, YANG C Y, LI L, et al.Allicin alleviated acrylamide-induced NLRP3 inflammasome activation via oxidative stress and endoplasmic reticulum stress in Kupffer cells and SD rats liver[J].Food and Chemical Toxicology, 2021, 148:111937.
[20] BARTOSZ G.Reactive oxygen species:Destroyers or messengers?[J].Biochemical Pharmacology, 2009, 77(8):1 303-1 315.
[21] 柯跃斌, 郑荣梁.自由基毒理学[M].北京:人民卫生出版社, 2012:16-20.
KE Y B, ZHENG R L.Free Radical Toxicology[M].Beijing:People′s Medical Publishing House, 2012:16-20.
[22] 张路路, 石婷, 朱梦婷, 等.黑灵芝多糖对丙烯酰胺诱导小肠上皮细胞氧化损伤的保护作用[J].食品科学, 2017, 38(3):170-175.
ZHANG L L, SHI T, ZHU M T, et al.Protective effect of Ganoderma atrum polysaccharides on oxidative damage induced by acrylamide in IEC-6 cells[J].Food Science, 2017, 38(3):170-175.
[23] 王莉, 叶维佳, 吴红静, 等.黑果枸杞多糖对大鼠肝损伤的保护研究[J].食品工业科技, 2020, 41(14):287-290;296.
WANG L, YE W J, WU H J, et al.Protective effect of Lycium barbarum polysaccharide on hepatic injury by acrylamide in rats[J].Science and Technology of Food Industry, 2020, 41(14):287-290;296.
[24] 江国勇, 雷艾彤, 杨莹, 等.黑灵芝多糖对丙烯酰胺致大鼠肝脏氧化损伤的保护作用[J].食品科学, 2020, 41(1):121-126.
JIANG G Y, LEI A T, YANG Y, et al.Protective effect of Ganoderma atrum polysaccharides against acrylamide-induced liver injury in rats[J].Food Science, 2020, 41(1):121-126.