生产与科研应用

一株产胞外多糖微藻的分离鉴定及其多糖抗氧化活性的研究

  • 吴思伟 ,
  • 李思雨 ,
  • 孙寒 ,
  • 刘红全 ,
  • 何秀苗 ,
  • 黄莹 ,
  • 吴嘉惠 ,
  • 黄柳媚 ,
  • 龙寒
展开
  • (广西民族大学 海洋与生物技术学院,广西多糖材料与改性重点实验室,广西 南宁,530006)
硕士研究生(刘红全副教授为通讯作者,E-mail:lhongquan@163.com)

收稿日期: 2021-03-15

  修回日期: 2021-03-30

  网络出版日期: 2022-01-21

基金资助

广西自然科学基金项目(2018GXNSFAA294032);广西民族大学研究生教育创新计划项目(gxun-chxps201919)

Isolation and identification of an exopolysaccharide-producing microalgae strain and its antioxidant activity

  • WU Siwei ,
  • LI Siyu ,
  • SUN Han ,
  • LIU Hongquan ,
  • HE Xiumiao ,
  • HUANG Ying ,
  • WU Jiahui ,
  • HUANG Liumei ,
  • LONG Han
Expand
  • (Guangxi Key Laboratory of Polysaccharide Materials and Modification, College of Marine and Biotechnology, Guangxi University for Nationalities, Nanning 530006, China)

Received date: 2021-03-15

  Revised date: 2021-03-30

  Online published: 2022-01-21

摘要

从广西北部湾防城港红树林筛选到1株高产胞外多糖的微藻GF02,结合形态学与分子生物学鉴定为小球藻属Chlorella Sorokiniana。初步表征结果表明GF02胞外粗多糖以α-型吡喃糖为主,通过响应面法优化GF02产胞外多糖的条件,实验表明,GF02产胞外多糖最佳培养条件为NaNO3 2.1 g/L,Na2CO3 0.02 g/L,MgSO4 0.086 g/L,K2HPO4 0.06 g/L,在此条件下,其胞外多糖积累量为216.268 mg/L,是优化前的1.60倍。对胞外多糖抗氧化活性进行了初步的研究,抗氧化活性结果表明,GF02粗多糖对DPPH清除率达到36.53%,对羟基自由基清除率达到67.33%。该研究为小球藻多糖的制备和进一步开发利用提供了实验基础。

本文引用格式

吴思伟 , 李思雨 , 孙寒 , 刘红全 , 何秀苗 , 黄莹 , 吴嘉惠 , 黄柳媚 , 龙寒 . 一株产胞外多糖微藻的分离鉴定及其多糖抗氧化活性的研究[J]. 食品与发酵工业, 2021 , 47(24) : 193 -200 . DOI: 10.13995/j.cnki.11-1802/ts.027350

Abstract

A microalgae strain with high exopolysaccharides production isolated from mangrove in Fangchenggang city, Beibu Gulf region, Guangxi province was named as GF02. GF02 was identified as Chlorella sorokiniana according to morphology and molecular biology analysis. Preliminary characterization results showed that the main component of the extracellular polysaccharide was α-pyranose. Response surface method was used to optimize the culture conditions of GF02 for the extracellular polysaccharide production. The results showed that the optimal culture condition for GF02 to produce exopolysaccharides were NaNO3 2.1 g/L,Na2CO3 0.02 g/L,MgSO4 0.086 g/L and K2HPO4 0.06 g/L. Under these conditions, the accumulation of extracellular polysaccharides was 216.268 mg/L, which was 1.60 times of that before optimization. The results of antioxidant activity analysis showed that the eliminating rate of GF02 exopolysaccharides on DPPH and hydroxyl radicals were up to 36.53% and 67.33%, respectively. This study would provide experimental basis for the preparation and further utilization of Chlorella polysaccharides.

参考文献

[1] BURG A, OSHRAT L O.Salt effect on the antioxidant activity of red microalgal sulfated polysaccharides in soy-bean formula[J].Marine Drugs, 2015, 13(10):6 425-6 439.
[2] SONG H, HE M L, GU C K, et al.Extraction optimization, purification, antioxidant activity, and preliminary structural characterization of crude polysaccharide from an arctic Chlorella sp.[J].Polymers, 2018, 10(3):292.
[3] PARK G T, GO R E, LEE H M, et al.Potential anti-proliferative and immunomodulatory effects of marine microalgal exopolysaccharide on various human cancer cells and lymphocytes in vitro[J].Marine Biotechnology, 2017, 19(2):136-146.
[4] 钟闰, 吴思伟, 何秀苗, 等.杜氏盐藻藻胞外多糖抗肿瘤活性及其机制研究[J].食品工业科技, 2020, 41(22):126-133.
ZHONG R, WU S W, HE X M, et al.Antitumor activity and mechanism of exopolysaccharide from Dunaliella salina[J].Science and Technology of Food Industry, 2020, 41(22):126-133.
[5] KIM M, YIM J H, KIM S Y, et al.In vitro inhibition of influenza a virus infection by marine microalga-derived sulfated polysaccharide p-KG03[J].Antiviral Research, 2012, 93(2):253-259.
[6] HUHEIHEL M, ISHANU V, TAL J, et al.Activity of Porphyridium sp.polysaccharide against Herpes simplex viruses in vitro and in vivo[J].Journal of Biochemical and Biophysical Methods, 2002, 50(2-3):189-200.
[7] NAVARRO GALLON S M, ALPASLAN E, WANG M, et al.Characterization and study of the antibacterial mechanisms of silver nanoparticles prepared with microalgal exopolysaccharides[J].Materials Science and Engineering:C, 2019, 99:685-695.
[8] DAI B, WEI D, ZHENG N N, et al.Coccomyxa gloeobotrydiformis polysaccharide inhibits lipopolysaccharide-induced inflammation in RAW 264.7 macrophages[J].Cellular Physiology and Biochemistry, 2018, 51(6):2 523-2 535.
[9] 唐倩, 周楠, 唐东山, 等.具鞘微鞘藻胞外多糖抗紫外辐射活性研究[J].环保科技, 2015, 21(4):16-20.
TANG Q, ZHOU N, TANG D S, et al.Research on anti-ultraviolet radiation activity of extracellular polysaccharide from Microcoleus vaginatus Gom[J].Environmental Protection and Technology, 2015, 21(4):16-20.
[10] 潘艺华. 产EPA海洋微藻的分离筛选及培养条件优化[D].南宁:广西民族大学, 2015.
PAN Y H.Microalgae isolated and culture medium optimization for eicosapentaenoic acid (EPA) productivities[D].Nanning:Guangxi University for Nationalities, 2015.
[11] 李洁琼. 两种小球藻EC04和DC01所产多糖的初步研究[D].南宁:广西民族大学, 2016.
LI J Q.Research of polysaccharide produced by Chlorella EC04 and DC01[D].Nanning:Guangxi University for Nationalities, 2016.
[12] 浦寅芳, 孙颖颖, 严军威, 等.不同环境因子对球等鞭金藻胞内和胞外多糖合成的影响[J].淮海工学院学报(自然科学版), 2008, 17(4):61-64.
PU Y F, SUN Y Y, YAN J W, et al.Effect of environmental factors on the intracellular and extracellular polysaccharide production of Isochrysis galbana[J].Journal of Huaihai Institute of Technology (Natural Sciences Edition), 2008, 17(4):61-64.
[13] 吴琪璐, 崔文倩, 沈亮, 等.环境因子对微藻胞外多聚物主要组分的影响[J].厦门大学学报(自然科学版), 2018, 57(3):346-353.
WU Q L, CUI W Q, SHEN L, et al.The effect of environmental factors on the principal conponents of microalgal extracellular polymeric substances[J].Journal of Xiamen University (Natural Science), 2018, 57(3):346-353.
[14] 曹科伟. 一株北极小球藻的温度适应性及其优化培养的研究[D].南京:南京农业大学, 2015.
CAO K W.The adaptability of an arctic Chlorella sp.to temperatures and its optimized cultivation[D].Nanjing:Nanjing Agricultural University, 2015.
[15] 孙建瑞, 赵君峰, 符丹丹, 等.响应面法优化Chlorella vulgaris 224胞外多糖积累及其抑菌和抗氧化活性[J].天然产物研究与开发, 2020, 32(3):489-497.
SUN J R, ZHAO J F, FU D D, et al.Optimization of extracellular polysaccharide accumulation from Chlorella vulgaris 224 and its antibacterial and antioxidant activity[J].Natural Product Research and Development, 2020, 32(3):489-497.
[16] 张红兵, 刘荟, 史秀英, 等.产油微藻的选育及其培养条件优化[J].生物技术进展, 2020, 10(3):311-319.
ZHANG H B, LIU H, SHI X Y, et al.Microalgae breeding with high efficient of oil-producing and optimization of cultivation conditions[J].Current Biotechnology, 2020, 10(3):311-319.
[17] HUANG G L, MEI X Y, HU J C.The antioxidant activities of natural polysaccharides[J].Current Drug Targets, 2017, 18(11):1 296-1 300.
[18] AMNA KASHIF S, HWANG Y J, PARK J K.Potent biomedical applications of isolated polysaccharides from marine microalgae Tetraselmis species[J].Bioprocess and Biosystems Engineering, 2018, 41(11):1 611-1 620.
[19] GÜLCIN İ, ELMASTAŞ M, ABOUL-ENEIN H Y.Determination of antioxidant and radical scavenging activity of Basil (Ocimum basilicum L.Family Lamiaceae) assayed by different methodologies[J].Phytotherapy Research, 2007, 21(4):354-361.
[20] SUN Y Y, WANG H, GUO G L, et al.The isolation and antioxidant activity of polysaccharides from the marine microalgae Isochrysis galbana[J].Carbohydrate Polymers, 2014, 113:22-31.
[21] 吴雅清, 冷小鹏.多糖体外抗氧化作用及其影响因素[J].广州化工, 2018, 46(4):4-9;16.
WU Y Q, LENG X P.Antioxidant activity and influencing factors of polysaccharides in vitro[J].Guangzhou Chemical Industry, 2018, 46(4):4-9;16.
[22] HROMÁDKOVÁ Z, PAULSEN B S, POLOVKA M, et al.Structural features of two heteroxylan polysaccharide fractions from wheat bran with anti-complementary and antioxidant activities[J].Carbohydrate Polymers, 2013, 93(1):22-30.
文章导航

/