从广西北部湾防城港红树林筛选到1株高产胞外多糖的微藻GF02,结合形态学与分子生物学鉴定为小球藻属Chlorella Sorokiniana。初步表征结果表明GF02胞外粗多糖以α-型吡喃糖为主,通过响应面法优化GF02产胞外多糖的条件,实验表明,GF02产胞外多糖最佳培养条件为NaNO3 2.1 g/L,Na2CO3 0.02 g/L,MgSO4 0.086 g/L,K2HPO4 0.06 g/L,在此条件下,其胞外多糖积累量为216.268 mg/L,是优化前的1.60倍。对胞外多糖抗氧化活性进行了初步的研究,抗氧化活性结果表明,GF02粗多糖对DPPH清除率达到36.53%,对羟基自由基清除率达到67.33%。该研究为小球藻多糖的制备和进一步开发利用提供了实验基础。
[1] BURG A, OSHRAT L O.Salt effect on the antioxidant activity of red microalgal sulfated polysaccharides in soy-bean formula[J].Marine Drugs, 2015, 13(10):6 425-6 439.
[2] SONG H, HE M L, GU C K, et al.Extraction optimization, purification, antioxidant activity, and preliminary structural characterization of crude polysaccharide from an arctic Chlorella sp.[J].Polymers, 2018, 10(3):292.
[3] PARK G T, GO R E, LEE H M, et al.Potential anti-proliferative and immunomodulatory effects of marine microalgal exopolysaccharide on various human cancer cells and lymphocytes in vitro[J].Marine Biotechnology, 2017, 19(2):136-146.
[4] 钟闰, 吴思伟, 何秀苗, 等.杜氏盐藻藻胞外多糖抗肿瘤活性及其机制研究[J].食品工业科技, 2020, 41(22):126-133.
ZHONG R, WU S W, HE X M, et al.Antitumor activity and mechanism of exopolysaccharide from Dunaliella salina[J].Science and Technology of Food Industry, 2020, 41(22):126-133.
[5] KIM M, YIM J H, KIM S Y, et al.In vitro inhibition of influenza a virus infection by marine microalga-derived sulfated polysaccharide p-KG03[J].Antiviral Research, 2012, 93(2):253-259.
[6] HUHEIHEL M, ISHANU V, TAL J, et al.Activity of Porphyridium sp.polysaccharide against Herpes simplex viruses in vitro and in vivo[J].Journal of Biochemical and Biophysical Methods, 2002, 50(2-3):189-200.
[7] NAVARRO GALLON S M, ALPASLAN E, WANG M, et al.Characterization and study of the antibacterial mechanisms of silver nanoparticles prepared with microalgal exopolysaccharides[J].Materials Science and Engineering:C, 2019, 99:685-695.
[8] DAI B, WEI D, ZHENG N N, et al.Coccomyxa gloeobotrydiformis polysaccharide inhibits lipopolysaccharide-induced inflammation in RAW 264.7 macrophages[J].Cellular Physiology and Biochemistry, 2018, 51(6):2 523-2 535.
[9] 唐倩, 周楠, 唐东山, 等.具鞘微鞘藻胞外多糖抗紫外辐射活性研究[J].环保科技, 2015, 21(4):16-20.
TANG Q, ZHOU N, TANG D S, et al.Research on anti-ultraviolet radiation activity of extracellular polysaccharide from Microcoleus vaginatus Gom[J].Environmental Protection and Technology, 2015, 21(4):16-20.
[10] 潘艺华. 产EPA海洋微藻的分离筛选及培养条件优化[D].南宁:广西民族大学, 2015.
PAN Y H.Microalgae isolated and culture medium optimization for eicosapentaenoic acid (EPA) productivities[D].Nanning:Guangxi University for Nationalities, 2015.
[11] 李洁琼. 两种小球藻EC04和DC01所产多糖的初步研究[D].南宁:广西民族大学, 2016.
LI J Q.Research of polysaccharide produced by Chlorella EC04 and DC01[D].Nanning:Guangxi University for Nationalities, 2016.
[12] 浦寅芳, 孙颖颖, 严军威, 等.不同环境因子对球等鞭金藻胞内和胞外多糖合成的影响[J].淮海工学院学报(自然科学版), 2008, 17(4):61-64.
PU Y F, SUN Y Y, YAN J W, et al.Effect of environmental factors on the intracellular and extracellular polysaccharide production of Isochrysis galbana[J].Journal of Huaihai Institute of Technology (Natural Sciences Edition), 2008, 17(4):61-64.
[13] 吴琪璐, 崔文倩, 沈亮, 等.环境因子对微藻胞外多聚物主要组分的影响[J].厦门大学学报(自然科学版), 2018, 57(3):346-353.
WU Q L, CUI W Q, SHEN L, et al.The effect of environmental factors on the principal conponents of microalgal extracellular polymeric substances[J].Journal of Xiamen University (Natural Science), 2018, 57(3):346-353.
[14] 曹科伟. 一株北极小球藻的温度适应性及其优化培养的研究[D].南京:南京农业大学, 2015.
CAO K W.The adaptability of an arctic Chlorella sp.to temperatures and its optimized cultivation[D].Nanjing:Nanjing Agricultural University, 2015.
[15] 孙建瑞, 赵君峰, 符丹丹, 等.响应面法优化Chlorella vulgaris 224胞外多糖积累及其抑菌和抗氧化活性[J].天然产物研究与开发, 2020, 32(3):489-497.
SUN J R, ZHAO J F, FU D D, et al.Optimization of extracellular polysaccharide accumulation from Chlorella vulgaris 224 and its antibacterial and antioxidant activity[J].Natural Product Research and Development, 2020, 32(3):489-497.
[16] 张红兵, 刘荟, 史秀英, 等.产油微藻的选育及其培养条件优化[J].生物技术进展, 2020, 10(3):311-319.
ZHANG H B, LIU H, SHI X Y, et al.Microalgae breeding with high efficient of oil-producing and optimization of cultivation conditions[J].Current Biotechnology, 2020, 10(3):311-319.
[17] HUANG G L, MEI X Y, HU J C.The antioxidant activities of natural polysaccharides[J].Current Drug Targets, 2017, 18(11):1 296-1 300.
[18] AMNA KASHIF S, HWANG Y J, PARK J K.Potent biomedical applications of isolated polysaccharides from marine microalgae Tetraselmis species[J].Bioprocess and Biosystems Engineering, 2018, 41(11):1 611-1 620.
[19] GÜLCIN İ, ELMASTAŞ M, ABOUL-ENEIN H Y.Determination of antioxidant and radical scavenging activity of Basil (Ocimum basilicum L.Family Lamiaceae) assayed by different methodologies[J].Phytotherapy Research, 2007, 21(4):354-361.
[20] SUN Y Y, WANG H, GUO G L, et al.The isolation and antioxidant activity of polysaccharides from the marine microalgae Isochrysis galbana[J].Carbohydrate Polymers, 2014, 113:22-31.
[21] 吴雅清, 冷小鹏.多糖体外抗氧化作用及其影响因素[J].广州化工, 2018, 46(4):4-9;16.
WU Y Q, LENG X P.Antioxidant activity and influencing factors of polysaccharides in vitro[J].Guangzhou Chemical Industry, 2018, 46(4):4-9;16.
[22] HROMÁDKOVÁ Z, PAULSEN B S, POLOVKA M, et al.Structural features of two heteroxylan polysaccharide fractions from wheat bran with anti-complementary and antioxidant activities[J].Carbohydrate Polymers, 2013, 93(1):22-30.