生产与科研应用

基于温度-水分-色泽耦合的青花椒变温干燥工艺研究

  • 武逸凡 ,
  • 杨明金 ,
  • 李瑞 ,
  • 陈子文 ,
  • 张凯 ,
  • 李守太 ,
  • 王教领 ,
  • 杨玲
展开
  • 1(西南大学 工程技术学院,丘陵山区农业装备重庆市重点实验室,重庆,400715)
    2(农业农村部南京农业机械化研究所,农业农村部现代农业装备重点实验室,江苏 南京,210014)
武逸凡(硕士研究生)和杨明金(教授)为共同第一作者(王教领助理研究员和杨玲教授为共同通讯作者,E-mail:kclwjl@126.com;857540348@qq.com)

收稿日期: 2021-03-12

  修回日期: 2021-04-06

  网络出版日期: 2022-01-21

基金资助

重庆市技术创新与应用发展专项重点项目(cstc2019jscx-gksbx0109);重庆市教育委员会项目(kjcx2020002;kjcx2020006);农业农村部现代农业装备重点实验室开放基金课题(ht20200705)

Research on temperature-varying drying process of green prickleyashes based on temperature-moisture-color coupling technology

  • WU Yifan ,
  • YANG Mingjin ,
  • LI Rui ,
  • CHEN Ziwen ,
  • ZHANG Kai ,
  • LI Shoutai ,
  • WANG Jiaoling ,
  • YANG Ling
Expand
  • 1(Chongqing Key Laboratory of Agricultural Equipment for Hilly and Mountainous Regions, College of Engineering and Technology, Southwest University, Chongqing 400715, China)
    2(Key Laboratory of Modern Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

Received date: 2021-03-12

  Revised date: 2021-04-06

  Online published: 2022-01-21

摘要

为降低青花椒干燥过程的褐变,缩短干燥时间,提高干燥质量,该文提出基于温度-水分-色泽(temperature- moisture- color,TMC)耦合的青花椒变温干燥工艺。通过温度、初始含水率、风速单因素试验获得青花椒在不同含水率水平下的色泽激变温度曲线,以初始含水率、温度和铺放量为控制因子,以总色差为评价指标进行Box-Behnken design试验确定最优工艺参数,最终结合色泽激变温度曲线制定TMC变温干燥工艺。结果表明,引起青花椒颜色变化的主要因素为温度及温度与含水率的耦合因素。在湿基初始含水率58.67%、铺放量30 g的条件下,TMC变温干燥工艺的最优变温步长为7.5 ℃,其干燥时间为15 h、总色差为16.79、开口率为98.03%。与优化后的恒温干燥相比,时间缩短13.49%、总色差减少11.3%、开口率增加19.59%,干燥品质显著提高。TMC变温干燥工艺可以为青花椒干制生产提供指导。

本文引用格式

武逸凡 , 杨明金 , 李瑞 , 陈子文 , 张凯 , 李守太 , 王教领 , 杨玲 . 基于温度-水分-色泽耦合的青花椒变温干燥工艺研究[J]. 食品与发酵工业, 2021 , 47(24) : 201 -208 . DOI: 10.13995/j.cnki.11-1802/ts.027339

Abstract

In order to reduce the browning of green prickleyashes products and drying time, and improve drying quality, this study proposed a temperature-varying drying process based on temperature-moisture-color (TMC) coupling technology. Through single factor test of temperature, initial moisture content, and wind speed, the rapid browning temperature curve of green prickleyashes at different moisture content levels was obtained. The initial moisture content, temperature and laying capacity were defined as control factors, and total color change(TCC) was defined as the evaluation index. A Box-Behnken design (BBD) was used to determine the optimal process parameters. Finally, the TMC temperature-varying drying technology was formulated according to the rapid browning temperature curve. The results showed that the main factors that cause the color change of green prickleyashes were temperature and the coupling factor of temperature and moisture content. Under the conditions of initial moisture content of 58.67% and laying capacity of 30 g, the optimal temperature step of the TMC temperature-varying drying technology was 7.5 ℃, resulting in a drying time of 15 h, TCC 16.79, an aperture ratio of 98.03%. Compared with optimized temperature-constant drying, drying time decreased by 13.49%, TCC decreased by 11.3%, and the aperture ratio increased by 19.59%. Therefore the drying quality of TMC temperature-varying drying technology was significantly improved, and the technology can guide to produce green prickleyashes drying.

参考文献

[1] 张艺. 青花椒干燥和贮藏时色泽变化与其特征成分的关系研究[D].重庆:西南大学, 2014.
ZHANG Y.Study on the relationship between color change and characteristic components during dry and storage in green prickleyash[D].Chongqing:Southwest University, 2014.
[2] 姚佳, 蒲彪.青花椒的研究进展[J].中国调味品, 2010, 35(6):35-39.
YAO J, PU B.Research progress on Zanthoxylum schinifolium sieb.et Zucc[J].China Condiment, 2010, 35(6):35-39.
[3] 张雪. 江津青花椒产业链整合策略研究[D].重庆:西南大学, 2020.
ZHANG X.Research on Jiangjin green pepper industry chain integration strategy[D].Chongqing:Southwest University, 2020.
[4] 张艺, 张甫生, 宋莹莹, 等.干燥条件对青花椒色泽的影响[J].食品科学, 2014, 35(5):23-27.
ZHANG Y, ZHANG F S, SONG Y Y, et al.Effects of different drying conditions on color change of green prickleyashes (Zanthoxylum schinifolium zucc.)[J].Food Science, 2014, 35(5):23-27.
[5] 吴素蕊, 阚建全, 刘蓓, 等.不同干燥青花椒香气成分比较研究[J].香料香精化妆品, 2007 (6):1-5;9.
WU S R, KAN J Q, LIU B, et al.Studies on the aroma components of Zanthoxylum schinifolium sieb.et zucc by different drying[J].Flavour Fragrance Cosmetics, 2007 (6):1-5;9.
[6] 陈科伟. 青花椒干燥时叶绿素的酶降解机理及其护色技术的研究[D].重庆:西南大学, 2012.
CHEN K W.Study on enzymatic degradation of chlorophyll in green prickleyash and its protective coloration during drying process[D].Chongqing:Southwest University, 2012.
[7] 汪洋. 青花椒在干燥过程中叶绿素光降解机制的研究[D].重庆:西南大学, 2013.
WANG Y.Study on photodegradation of chlorophyll in green prickleyash during drying process[D].Chongqing:Southwest University, 2013.
[8] 郑严,陈建,谢守勇, 等.花椒恒温与控温热风干燥的对比试验研究[J].农业工程学报,2008,24(2):277-280.
ZHENG Y, CHEN J, XIE S Y, et al.Contrast between heated air drying of Chinese prickly ash under constant temperature and that under graded and controlled temperature[J].Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(2):277-280.
[9] 杨兵, 梅小飞, 阚建全.热泵干制对青花椒色差和品质的影响及工艺优化[J].食品与发酵工业, 2019, 45(12):140-145;151.
YANG B, MEI X F, KAN J Q.Effects of heat pump drying on chromatism and quality of Zanthoxylum L.and process optimization[J].Food and Fermentation Industries, 2019, 45(12):140-145;151.
[10] 王玲,田冰,彭林, 等.热风-微波联合干燥青花椒工艺优化[J].食品与发酵工业,2019,45(18):176-182.
WANG L, TIAN B, PENG L, et al.Optimization of hot air-microwave combined drying of Zanthoxylum schinifolium[J].Food and Fermentation Industries, 2019,45(18):176-182.
[11] LI X J, WANG X, LI Y, et al.Changes in moisture effective diffusivity and glass transition temperature of paddy during drying[J].Computers and Electronics in Agriculture, 2016, 128:112-119.
[12] 郑先哲, 刘辉, 沈柳杨, 等.基于玻璃化转变的稻谷变温热风干燥工艺研究[J].农业机械学报, 2020, 51(1):331-340.
ZHENG X Z, LIU H, SHEN L Y, et al.Hot-air drying technology of changing temperature for paddy rice based on glass transition theory[J].Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1):331-340.
[13] 吴文福, 陈俊轶, 成荣敏, 等.玉米籽粒变温变湿干燥后不饱和脂肪酸与干燥系统的耦合关系[J].农业工程学报, 2019, 35(16):328-333.
WU W F, CHEN J Y, CHENG R M, et al.Coupling relationship between content of unsaturated fatty acid and drying system of corn grain after variable temperature and humidity drying[J].Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16):328-333.
[14] 张志勇, 李元强, 刘成海, 等.基于“热失控”规律的香菇微波干燥工艺优化[J].食品科学, 2020, 41(10):230-237.
ZHANG Z Y, LI Y Q, LIU C H, et al.Optimization of microwave drying of shiitake mushrooms considering thermal runaway[J].Food Science, 2020, 41(10):230-237.
[15] 黎斌, 彭桂兰, 罗传伟, 等.基于Weibull分布函数的花椒真空干燥动力学特性[J].食品与发酵工业, 2017, 43(11):58-64.
LI B, PENG G L, LUO C W, et al.Vacuum drying kinetics characteristics of Chinese prickly ash based on Weibull distribution[J].Food and Fermentation Industries, 2017, 43(11):58-64.
[16] KAUR R, KAUR K, AHLUWALIA P.Effect of drying temperatures and storage on chemical and bioactive attributes of dried tomato and sweet pepper[J].LWT, 2020, 117:108604.
[17] 中华人民共和国国家卫生和计划生育委员会. GB 5009.3—2016 食品安全国家标准 食品中水分的测定[S].北京:中国标准出版社,2016.
National Health Commission of the People′s Republic of China.GB5009.3—2016 National food safety standard Determination of mois-ture in foods[S].Beijing:China Standards Press,2016.
[18] JAYATUNGA G K, AMARASINGHE B M W P K.Drying kinetics, quality and moisture diffusivity of spouted bed dried Sri Lankan black pepper[J].Journal of Food Engineering, 2019, 263:38-45.
[19] 杨玲. 甘蓝型油菜籽热风干燥传热传质特性及模型研究[D].重庆:西南大学, 2014.
YANG L.Heat & Mass Transfer Characteristics and model of hot-air drying for seed of rape(Brassica napus L.)[D] Chongqing:Southwest University, 2014.
[20] MARKOWSKI M, BIAŁOBRZEWSKI I, MODRZEWSKA A.Kinetics of spouted-bed drying of barley:Diffusivities for sphere and ellipsoid [J].Journal of Food Engineering, 2010, 96(3):380-387.
[21] 王坤华, 李佳美, 彭飞, 等.射频处理对红枣中短波红外干燥动力学及品质特性的影响[J].食品科学, 2020, 41(7):117-123.
WANG K H, LI J M, PENG F, et al.Effects of radio frequency treatment on short- and medium-wavelength infrared drying kinetics and quality characteristics of red jujubes[J].Food Science, 2020, 41(7):117-123.
[22] GANJE M, JAFARI S M, FARZANEH V, et al.Kinetics modelling of color deterioration during thermal processing of tomato paste with the use of response surface methodology[J].Heat and Mass Transfer, 2018, 54(12):3 663-3 671.
[23] NKHATA S G.Total color change (ΔE) is a poor estimator of total carotenoids lost during post-harvest storage of biofortified maize grains [J].Heliyon, 2020:e05173.
[24] 关志强, 王秀芝, 李敏, 等.荔枝果肉热风干燥薄层模型[J].农业机械学报, 2012, 43(2):151-158;191.
GUAN Z Q, WANG X Z, LI M, et al.Mathematical modeling of hot air drying of thin layer Litchi flesh[J].Transactions for The Chinese Society of Agricultural Machinery, 2012, 43(2):151-158;191.
[25] 王萍, 陈垚, 李述刚, 等.变温加湿制干对南疆地区骏枣干燥特性及品质影响研究[J].食品科技, 2016, 41(12):14-19.
WANG P, CHEN Y, LI S G, et al.Dried characteristics and quality of different parts of jujube(Junzao) under temperature and humidity variable drying methods in the southern of Xinjiang[J].Food Science and Technology, 2016, 41(12):14-19.
[26] 李兴东,常迎香,刘海忠, 等.花椒热风干燥特性的实验分析与数学模型[J].食品工业科技, 2011,32(4):145-147.
LI X D, CHANG Y X, LIU H Z, et al.Study on hot-air drying behavior and mathematical models of Zanthoxylum[J].Science and Technology of Food Industry, 2011,32(4):145-147.
文章导航

/