研究报告

宰后不同部位牛肉保水性变化和蛋白质特性研究

  • 左惠心 ,
  • 温彬 ,
  • 罗欣 ,
  • 朱立贤 ,
  • 牛乐宝 ,
  • 张一敏 ,
  • 毛衍伟
展开
  • (山东农业大学 食品科学与工程学院,山东 泰安,271018)
博士,讲师(朱立贤教授为通信作者,E-mail:zhlx@sdau.edu.cn)

收稿日期: 2021-04-08

  修回日期: 2021-04-24

  网络出版日期: 2022-02-28

基金资助

国家自然科学基金青年基金项目(31801610);国家自然科学基金面上基金项目(32072239);国家肉牛牦牛产业技术体系项目(CARS-37)

Water-holding capacity and protein properties analysis in different parts of chilled beef during postmortem aging

  • ZUO Huixin ,
  • WEN Bin ,
  • LUO Xin ,
  • ZHU Lixian ,
  • NIU Lebao ,
  • ZHANG Yimin ,
  • MAO Yanwei
Expand
  • (College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China)

Received date: 2021-04-08

  Revised date: 2021-04-24

  Online published: 2022-02-28

摘要

为探究宰后不同部位牛肉保水性存在差异的原因,该研究以成熟1、2、3、5和7 d的冷却牛背最长肌、半膜肌和腰大肌作为研究对象,通过对失水率、蛋白质化学作用力以及蛋白质稳定性的变化和差异进行分析,阐述3种部位冷却牛肉成熟过程中保水性及蛋白质特性变化。结果表明,在成熟前5 d离子键作用力变化不显著(P> 0.05),成熟第7天显著升高(P< 0.05);3种部位中,氢键和疏水性相互作用力在成熟过程中的变化不同,且不同部位之间的差异也不相同。但在较长的成熟时间内,3种部位牛肉的离子键、氢键和疏水性相互作用力差异不大。差示扫描量热法结果显示,成熟期间腰大肌的TmaxpeakI由55.03 ℃显著降低至54.14 ℃(P<0.05),TmaxpeakII的均值为63.56 ℃,腰大肌的焓变值DHpeakI和DHpeakII具有相同趋势,均显著低于背最长肌和半膜肌(P<0.05),表明腰大肌蛋白质更易发生变性,且肌球蛋白和肌浆蛋白的蛋白质变性程度更高。蛋白质变性程度不同可能是导致不同部位牛肉保水性存在差异的原因。

本文引用格式

左惠心 , 温彬 , 罗欣 , 朱立贤 , 牛乐宝 , 张一敏 , 毛衍伟 . 宰后不同部位牛肉保水性变化和蛋白质特性研究[J]. 食品与发酵工业, 2022 , 48(2) : 45 -51 . DOI: 10.13995/j.cnki.11-1802/ts.027663

Abstract

In order to investigate the changes of water-holding capacity (WHC) in different parts of chilled beef, the chilled M.longissimus lumborum (LL), M. semimembranosus (SM) and M.psoas major (PM) beef aged for 1, 2, 3, 5 and 7 d were investigated in this study. From the perspectives of pressure loss, chemical forces and protein stability, the changes of WHC and protein properties of the three parts of chilled beef were described. The results indicated that the ionic bond force did not change significantly until the 5th day (P>0.05) of postmortem aging time. And it increased significantly on the 7th day (P< 0.05). For the changes of hydrogen bond force and hydrophobic interaction force, the changes of each part were different during postmortem aging. However, in the longer postmortem aging time, the change of the chemical forces in three parts of beef were not significant, which indicating that there was no relationship between the chemical forces and WHC in the three parts of chilled beef. The results of differential scanning calorimetry (DSC) showed that TmaxpeakI was significantly reduced from 55.03 ℃ to 54.14 ℃ (P< 0.05). And the TmaxpeakII was 63.56 ℃ and the DHpeak had the same trend in PM (P< 0.05). Moreover, DHpeak I and DHpeak II in PM were significantly lower than that of LL and SM (P< 0.05), indicating that the protein of PM was more susceptible to denaturation. Besides, the protein denaturation of myosin and sarcoplasmic proteins were higher in PM. The different degree of protein denaturation may be the reason for the changes in WHC in different parts of beef.

参考文献

[1] 孙文彬, 罗欣, 毛衍伟, 等.正常牛肉与DFD牛肉成熟过程中保水性和水分状态变化[J].食品科学, 2020, 41(13):14-21.
SUN W B, LUO X, MAO Y W, et al.Changes in water retention and moisture state of normal and dark, firm and dry beef during postmortem aging[J].Food Science, 2020, 41(13):14-21.
[2] PUOLANNE E.Developments in Our Understanding of Water-Holding Capacity in Meat[M].Amsterdam:Elsevier, 2017.
[3] 左惠心, 殷元虎, 韩玲, 等.宰后牦牛肉保水性变化与差异蛋白的生物信息学分析[J].农业机械学报, 2017, 48(7):325-331;300.
ZUO H X, YIN Y H, HAN L, et al.Changes of postmortem water-holding capacity in yak muscle and bioinformatic analysis of differentially abundant proteins[J].Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7):325-331;300.
[4] 左惠心, 韩玲, 余群力, 等.牦牛与黄牛肌肉差异蛋白质组及生物信息学分析[J].农业机械学报, 2017, 48(4):313-320.
ZUO H X, HAN L, YU Q L, et al.Proteomics and bioinformatics analyses of differentially expressed proteins in yak and beef cattle muscle[J].Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4):313-320.
[5] ZUO H X, HAN L, YU Q L, et al.Proteome changes on water-holding capacity of yak longissimus lumborum during postmortem aging[J].Meat Science, 2016, 121:409-419.
[6] 杨玉莹, 张一敏, 毛衍伟, 等.不同部位牦牛肉肌纤维特性与肉品质差异[J].食品科学, 2019, 40(21):72-77.
YANG Y Y, ZHANG Y M, MAO Y W, et al.Differences in myofiber characteristics and meat quality of different yak muscles[J].Food Science, 2019, 40(21):72-77.
[7] 尹靖东. 动物肌肉生物学与肉品科学[M].北京:中国农业大学出版社, 2011.
YIN J D.Animal Muscle Biology and Meat Quality[M].Beijing:China Agricultural University Press, 2011.
[8] VASKOSKA R, HA M, ONG L, et al.Ageing and cathepsin inhibition affect the shrinkage of fibre fragments of bovine semitendinosus, biceps femoris and psoas major during heating[J].Meat Science, 2021, 172:108 339.
[9] ERTBJERG P, PUOLANNE E.Muscle structure, sarcomere length and influences on meat quality:A review[J].Meat Science, 2017, 132:139-152.
[10] SCHÄFER A, ROSENVOLD K, PURSLOW P P, et al.Physiological and structural events post mortem of importance for drip loss in pork[J].Meat Science, 2002, 61(4):355-366.
[11] LAWSON M A.The role of integrin degradation in post-mortem drip loss in pork[J].Meat Science, 2004, 68(4):559-566.
[12] ZHANG W G, LONERGAN S M, GARDNER M A, et al.Contribution of postmortem changes of integrin, desmin and μ-calpain to variation in water holding capacity of pork[J].Meat Science, 2006, 74(3):578-585.
[13] LI X, WEI X L, WANG H, et al.Relationship between protein denaturation and water holding capacity of pork during postmortem ageing[J].Food Biophysics, 2018, 13(1):18-24.
[14] MA D Y, KIM Y H B.Proteolytic changes of myofibrillar and small heat shock proteins in different bovine muscles during aging:Their relevance to tenderness and water-holding capacity[J].Meat Science, 2020, 163:108090.
[15] FRANCO D, BISPO E, GONZÁLEZ L, et al.Effect of finishing and ageing time on quality attributes of loin from the meat of Holstein-Fresian cull cows[J].Meat Science, 2009, 83(3):484-491.
[16] GÓMEZ-GUILLÉN M C, BORDERÍAS A J, MONTERO P.Chemical interactions of nonmuscle proteins in the network of Sardine (Sardina pilchardus) muscle gels[J].LWT-Food Science and Technology, 1997, 30(6):602-608.
[17] 康怀彬, 邹良亮, 张慧芸, 等.高温处理对牛肉蛋白质化学作用力及肌原纤维蛋白结构的影响[J].食品科学, 2018, 39(23):80-86.
KANG H B, ZOU L L, ZHANG H Y, et al.Effect of high temperature treatment on chemical forces of beef proteins and structure of myofibrillar protein[J].Food Science, 2018, 39(23):80-86.
[18] DENG Y, ROSENVOLD K, KARLSSON A H, et al.Relationship between thermal denaturation of porcine muscle proteins and water-holding capacity[J].Journal of Food Science, 2002, 67(5):1 642-1 647.
[19] ZENG Z, LI C, ERTBJERG P.Relationship between proteolysis and water-holding of myofibrils[J].Meat Science, 2017, 131:48-55.
[20] 郑红, 苏现波, 马良, 等.货架期冷藏过程中鳝鱼肉理化指标及蛋白质变化规律[J].食品科学, 2018, 39(7):215-220.
ZHENG H, SU X B, MA L, et al.Changes in physicochemical properties and proteins during shelf life of cold stored swamp eel (Monopterus albus)[J].Food Science, 2018, 39(7):215-220.
[21] 郭兆斌, 余群力, 陈骋, 等.宰后牦牛肉水分分布变化与持水性能关系研究[J].农业机械学报, 2019, 50(10):343-351.
GUO Z B, YU Q L, CHEN C, et al.Relationship between water distribution change and water retention properties of yak meat during postmortem aging[J].Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10):343-351.
[22] 王静宇, 胡新, 刘晓艳, 等.肌原纤维蛋白热诱导凝胶特性及化学作用力研究进展[J].食品与发酵工业, 2020, 46(8):300-306.
WANG J Y, HU X, LIU X Y, et al.Advances in heat-induced gel properties and chemical forces of myofibrillar protein gel[J].Food and Fermentation Industries, 2020, 46(8):300-306.
[23] KRISTENSEN L, PURSLOW P P.The effect of ageing on the water-holding capacity of pork:Role of cytoskeletal proteins[J].Meat Science, 2001, 58(1):17-23.
[24] HUGHES J M, OISETH S K, PURSLOW P P, et al.A structural approach to understanding the interactions between colour, water-holding capacity and tenderness[J].Meat Science, 2014, 98(3):520-532.
[25] WIKLUND E, STEVENSON-BARRY J M, DUNCAN S J, et al.Electrical stimulation of red deer (Cervus elaphus) carcasses-effects on rate of pH-decline, meat tenderness, colour stability and water-holding capacity[J].Meat Science, 2001, 59(2):211-220.
[26] SUJIWO J, KIM H J, SONG S O, et al.Relationship between quality and freshness traits and torrymeter value of beef loin during cold storage[J].Meat Science, 2019, 149:120-125.
[27] KIM Y H B, WARNER R D, ROSENVOLD K.Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality:A review[J].Animal Production Science, 2014, 54(4):375.
[28] BERTRAM H C, WU Z Y, VAN DEN BERG F, et al.NMR relaxometry and differential scanning calorimetry during meat cooking[J].Meat Science, 2006, 74(4):684-689.
[29] 陈韬. 宰后肌肉蛋白质和组织结构变化与冷却猪肉持水性的关系研究[D].南京:南京农业大学, 2005.
CHEN T.Study on relationship between muscle protein and structural changes postmortem and water-holding capacity of chilled pork[D].Nanjing:Nanjing Agricultural University, 2005.
[30] HUFF-LONERGAN E, LONERGAN S M.Mechanisms of water-holding capacity of meat:The role of postmortem biochemical and structural changes[J].Meat Science, 2005, 71(1):194-204.
文章导航

/