研究报告

碱处理对玉米秸秆固态厌氧消化过程中菌群结构的影响

  • 张成明 ,
  • 李砚飞 ,
  • 董保成 ,
  • 刘晓玲 ,
  • 白耀博 ,
  • 曹丹 ,
  • 刘洁 ,
  • 李十中
展开
  • 1(徐州生物工程职业技术学院,徐州市生物制药与废弃物综合利用工程中心,江苏 徐州,221006)
    2(青县新能源技术推广中心,河北 沧州,062650)
    3(农业农村部农业生态与资源保护总站,北京,100125)
    4(天津大学 化工学院,天津,300350)
    5(中国环境科学研究院,北京,100012)
    6(清华大学 核能与新能源技术研究院,中美生物燃料联合研究中心,北京,100084)
博士,讲师(本文通信作者E-mail:zhangchengming01@163.com)

收稿日期: 2021-06-11

  修回日期: 2021-06-28

  网络出版日期: 2022-03-16

基金资助

北京市自然科学基金面上项目(8182058);徐州市应用基础研究计划(KC18016);国家重大专项(2015ZX07103-007)

Effect of alkali treatment on the microbial community structure in solid-state anaerobic digestion of corn straw

  • ZHANG Chengming ,
  • LI Yanfei ,
  • DONG Baocheng ,
  • LIU Xiaoling ,
  • BAI Yaobo ,
  • CAO Dan ,
  • LIU Jie ,
  • LI Shizhong
Expand
  • 1(Xuzhou Biopharmaceutical and Waste Comprehensive Engineering Technology Research Center, Xuzhou Vocational College of Bioengineering, Xuzhou 221006, China)
    2(Qing County New Energy Technology Promotion Center, Cangzhou 062650, China)
    3(Rural Energy and Environment Agency, Beijing 100125, China)
    4(School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China)
    5(Chinese Research Academy of Environmental Sciences, Beijing 100012, China)
    6(Institute of Nuclear and New Energy Technology, MOST-USDA Joint Research Center for Biofuels, Tsinghua University, Beijing 100084, China)

Received date: 2021-06-11

  Revised date: 2021-06-28

  Online published: 2022-03-16

摘要

从微生物菌群的动态变化来阐述厌氧消化过程已成为近年的研究热点之一。该文从微生物菌群变化的角度对碱预处理促进纤维质原料厌氧消化性能的原因进行了分析。通过对碱预处理组及对照组典型厌氧消化阶段进行取样、高通量测序后,比较二者在菌群结构方面的差异。结果表明,底物种类及碱处理均对厌氧消化菌群结构有显著影响。实验中共鉴定出10个门、16个属的微生物。微生物主要属于厚壁菌门、拟杆菌门、变形菌门和广古菌门。碱预处理可以显著促进厌氧消化中前期厚壁菌门微生物的增殖。从属水平看,碱处理促进了水解菌、产酸菌和产甲烷菌的增殖;对照组中的微生物更加多样化。甲烷鬃菌属在甲烷菌中占据优势,这表明在该研究条件下乙酸途径是产甲烷的主要途径。

本文引用格式

张成明 , 李砚飞 , 董保成 , 刘晓玲 , 白耀博 , 曹丹 , 刘洁 , 李十中 . 碱处理对玉米秸秆固态厌氧消化过程中菌群结构的影响[J]. 食品与发酵工业, 2022 , 48(4) : 69 -74 . DOI: 10.13995/j.cnki.11-1802/ts.028339

Abstract

Describing the anaerobic digestion (AD) process from the dynamic changes of microbial community is a hot research topic in recent years. In this paper, the reason why alkali treatment could promote the AD performance of cellulosic materials was described from the perspective of microbial community changes. The differences of microbial community structure between alkali treatment group and control group at typical AD stages were compared by sampling, extracting total bacterial DNA, and high-throughput sequencing. Results showed that substrate types and alkali treatment had significant effects on the AD microbial community. Ten phyla and 16 genera were identified in this study. Microorganisms mainly belong to Firmicutes, Bacteroidetes, Proteobacteria and Euryarchaeota at phylum level. Alkali treatment could significantly promote the proliferation of Firmicutes in the early and middle stage of AD. At genus level, alkali treatment promoted the proliferation of hydrolytic bacteria, acidogenic bacteria and methanogens. The microorganisms in the control group were more diverse. Methanosaeta was the dominant methanogen, which indicated that acetoclastic pathway was the main methane generation pathway in this study.

参考文献

[1] 李砚飞, 厚汝丽, 潘洪战, 等.秸秆沼气产业化综合利用模式的探讨——以青县模式为例[J].食品与发酵工业, 2018, 44(6):277-280.
LI Y F, HOU R L, PAN H Z, et al.Discussion on comprehensive utilization of straws for biogas production on industrial scale-taking Qing county mode as an example[J].Food and Fermentation Industries, 2018, 44(6):277-280.
[2] 张成明, 董保成, 张建华, 等.直接空气吹脱法去除废水中的氨氮[J].食品与发酵工业, 2021,47(19):155-160.
ZHANG C M, DONG B C, ZHANG J H, et al.Preliminary study on ammonia nitrogen removal from wastewater by direct air stripping[J].Food and Fermentation Industries, 2021,47(19):155-160.
[3] MAHMOODI-ESHKAFTAKI M, RAHMANIAN-KOUSHKAKI H.An optimum strategy for substrate mixture and pretreatment in biogas plants: Potential application for high-pH waste management[J].Waste Management, 2021, 14(3):891-900.
[4] KHAN M U, AHRING B K.Anaerobic digestion of digested manure fibers:Influence of thermal and alkaline thermal pretreatment on the biogas yield[J].BioEnergy Research, 2021,14(3):891-900.
[5] 韩娅新, 张成明, 陈雪兰, 等.不同农业有机废弃物产甲烷特性比较[J].农业工程学报, 2016, 32(1):258-264.
HAN Y X, ZHANG C M, CHEN X L, et al.Methane production performance comparison of different agricultural residues[J].Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(1):258-264.
[6] TAHERZADEH M J, KARIMI K.Pretreatment of lignocellulosic wastes to improve ethanol and biogas production:A review[J].International Journal of Molecular Sciences, 2008, 9(9):1 621-1 651.
[7] MIRMOHAMADSADEGHI S, KARIMI K, AZARBAIJANI R, et al.Pretreatment of lignocelluloses for enhanced biogas production:A review on influencing mechanisms and the importance of microbial diversity[J].Renewable and Sustainable Energy Reviews, 2021, 135:110173.
[8] DE FRANCISCI D, KOUGIAS P G, TREU L, et al.Microbial diversity and dynamicity of biogas reactors due to radical changes of feedstock composition[J].Bioresource Technology, 2015,176:56-64.
[9] HAN R, ZHU D R, XING J W, et al.The effect of temperature fluctuation on the microbial diversity and community structure of rural household biogas digesters at Qinghai Plateau[J].Archives of Microbiology, 2020, 202(3):525-538.
[10] 蒋滔, 韦秀丽, 肖璐, 等.玉米秸秆固态和液态厌氧发酵产气性能与微生物种类比较研究[J].农业工程学报, 2020, 36(3):227-235.
JIANG T, WEI X L, XIAO L, et al.Comparison of biogas production and microbial species of corn straw in solid-state anaerobic digestion (SS-AD) and liquid anaerobic digestion (L-AD)[J].Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(3):227-235.
[11] LIU Y C, WHITMAN W B.Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea[J].Annals of the New York Academy of Sciences, 2008, 1 125(1):171-189.
[12] 令利军, 何楠, 白雪, 等.基于高通量测序的玉米秸秆自然发酵过程中细菌菌群结构特征[J].兰州大学学报(自然科学版), 2017, 53(4):104-111.
LING L J, HE N, BAI X, et al.Bacterial community in naturally fermentative maize straw by high-throughput sequencing[J].Journal of Lanzhou University (Natural Sciences), 2017, 53(4):104-111.
[13] 王旭辉, 徐鑫, 宝哲, 等.高通量测序分析玉米秸秆与牛粪联合发酵阶段微生物多样性变化[J].食品与发酵工业, 2019, 45(3):47-55.
WANG X H, XU X, BAO Z, et al.High-throughput sequencing analysis of microbial diversity in the combined fermentation stages of cow dung and corn straw[J].Food and Fermentation Industries, 2019, 45(3):47-55.
[14] 青格尔, 于晓芳, 高聚林, 等.玉米秸秆低温降解复合菌系降解能力及微生物组成研究[J].中国生态农业学报, 2020, 28(11):109-121.
QING G E, YU X F, GAO J L, et al.Straw degradation ability and composition of microbial consortium for corn straw decomposition at low temperature[J].Chinese Journal of Eco-Agriculture, 2020, 28(11):1 753-1 765.
[15] FENG J Y, LI Y Q, ZHANG E L, et al.Solid-state co-digestion of NaOH-pretreated corn straw and chicken manure under mesophilic condition[J].Waste & Biomass Valorization, 2018, 9(6):1 027-1 035.
[16] LIU F H, WANG S B, ZHANG J S, et al.The structure of the bacterial and archaeal community in a biogas digester as revealed by denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis[J].Journal of Applied Microbiology, 2009, 106(3):952-966.
[17] ABDOU L, BOILEAU C, DE PHILIP P, et al.Transcriptional regulation of the Clostridium cellulolyticum cip-cel operon:A complex mechanism involving a catabolite-responsive element[J].Journal of Bacteriology, 2008, 190(5):1 499-1 506.
[18] PERRET S, BÉLAICH A, FIEROBE H P, et al.Towards designer cellulosomes in clostridia:Mannanase enrichment of the cellulosomes produced by Clostridium cellulolyticum[J].Journal of Bacteriology, 2004, 186(19):6 544-6 552.
[19] GIALLO J, GAUDIN C, BELAICH J P.Metabolism and solubilization of cellulose by Clostridium cellulolyticum H10[J].Applied & Environmental Microbiology, 1985, 49(5):1 216-1 221.
文章导航

/