分析与检测

基于高光谱成像技术的大曲还原糖含量预测及其可视化

  • 刘亮 ,
  • 黄丹平 ,
  • 田建平 ,
  • 黄丹 ,
  • 罗惠波 ,
  • 田颖 ,
  • 徐佳乐 ,
  • 叶建秋
展开
  • 1(四川轻化工大学 机械工程学院,四川 宜宾,644000)
    2(四川轻化工大学 生物工程学院,四川 宜宾,644000)
硕士研究生(黄丹平教授为通信作者,E-mail:hdpyx2002@163.com)

网络出版日期: 2022-04-06

基金资助

酿酒生物技术及应用四川省重点实验室项目(NJ2018-05);企事业单位委托科技项目(CXY2019ZR006)

Prediction and visualization of reducing sugar content in Daqu based on hyperspectral imaging technology

  • LIU Liang ,
  • HUANG Danping ,
  • TIAN Jianping ,
  • HUANG Dan ,
  • LUOHuibo ,
  • TIAN Ying ,
  • XU Jiale ,
  • YE Jianqiu
Expand
  • 1(College of Mechanical Engineering,Sichuan University of Science and Technology,Yibin 644000,China)
    2(College of Bioengineering,Sichuan University of Science and Technology,Yibin 644000,China)

Online published: 2022-04-06

摘要

还原糖是大曲质量评价的重要指标,为进一步提高大曲还原糖含量的检测精度,提出了一种应用高光谱成像技术检测大曲还原糖含量的方法。采用高光谱成像系统,在900~1 700 nm采集大曲样本的光谱信息,并提取全部样本的平均光谱数据。首先,采用标准正态变量校正(standard normal variables,SNV)、卷积平滑、多元散射校正3种预处理方法对原始光谱进行预处理;然后,分别使用主成分分析(principal component analysis,PCA)荷载系数法、连续投影法(successive projections algorithm,SPA)和PCA荷载系数-SPA三种方法提取了大曲光谱数据的特征波段;最后,基于全波段和特征波段的光谱数据,分别建立了预测还原糖含量的偏最小二乘回归(partial least squares regression,PLSR)和最小支持向量机(least squares support vector machine,LS-SVM)模型。结果表明,对SNV预处理后的大曲光谱数据,采用PCA-SPA算法提取的特征波段建立的PLSR模型效果最佳,其中提取的特征波段数为26个,预测集相关系数为0.922 7,预测集均方根误差为0.455 6 g/100 g。基于最优的模型SNV+PCA+SPA+PLSR对不同发酵时期的大曲样本实现了还原糖含量的可视化。利用高光谱成像技术可实现大曲还原糖含量的快速检测和可视化分布,研究结果为大曲中还原糖含量的检测提供了一种新的方法。

本文引用格式

刘亮 , 黄丹平 , 田建平 , 黄丹 , 罗惠波 , 田颖 , 徐佳乐 , 叶建秋 . 基于高光谱成像技术的大曲还原糖含量预测及其可视化[J]. 食品与发酵工业, 2022 , 48(5) : 247 -254 . DOI: 10.13995/j.cnki.11-1802/ts.029117

Abstract

Reducing sugar is an important index for the quality evaluation of Daqu. In order to further improve the detection accuracy of reducing sugar content in Daqu, a method for detecting reducing sugar content in Daqu by hyperspectral imaging technology was proposed. The hyperspectral imaging system was used to collect the spectral information of Daqu samples in the range of 900-1 700 nm, and extract the average spectral data of all samples. Firstly, standard normal variables (SNV), smoothing convolution (SG) and multiplicative scatter correction (MSC) are used to preprocess the original spectrum. Then, the characteristic bands of Daqu spectral data are extracted by principal component analysis (PCA) load coefficient method, successive projections algorithm (SPA) and PCA load coefficient SPA respectively; Finally, based on the spectral data of full band and characteristic band, partial least squares regression (PLSR) and least squares support vector machine (LS-SVM) models for predicting reducing sugar content were established. The results showed that the PLSR model based on the feature bands extracted by PCA-SPA algorithm was the best for the Daqu spectral data preprocessed by SNV, in which the number of feature bands extracted was 26, the correlation coefficient of prediction set was 0.922 7, and the root mean square error of prediction set was 0.455 6 g/100 g. Based on the optimal model SNV+PCA+SPA+PLSR, the reducing sugar content of Daqu samples in different fermentation periods was visualized. Rapid detection and visual distribution of reducing sugar content in Daqu could be realized by hyperspectral imaging technology, which provides a new method for the detection of reducing sugar content in Daqu.

参考文献

[1] 孙婷,胡新军,田建平,等.基于高光谱成像技术的大曲酸度值预测及其可视化[J].食品与发酵工业,2020,46(17):226-231.
SUN T,HU X J,TIAN J P,et al.Prediction and visualization of Daqu acidity based on hyperspectral imaging technology[J].Food and Fermentation Industries,2020,46(17):226-231.
[2] 张会敏,孟雅静,王艳丽,等.浓香型白酒窖池分层分位点池底窖泥pH值、主要有机酸与钙、镁离子之间的相关性分析[J].食品科学,2020,41(19):90-97.
ZHANG H M,MENG Y J,WANG Y L,et al.Correlation analysis between pH,major organic acids,calcium and magnesium ions of stratified mottom-pit-mud from Chinese strong-flavor Baijiu pit[J].Food Science,2020,41(19):90-97.
[3] 周森,胡佳音,崔洋,等.应用高通量测序技术解析清香型大曲微生物多样性[J].中国食品学报,2019,19(6):244-250.
ZHOU S,HU J Y,CUI Y,et al.Microbial diversity analysis of flight-flavor Daqu using high-throughput sequencing[J].Chinese Journal of Food Science and Technology,2019,19(6):244-250.
[4] 向慧平,林宜锦,关统伟,等.四川浓香型大曲生产中酵母菌、芽胞杆菌与工艺指标的关联性分析[J].食品科学,2020,41(2):196-201.
XIANG H P,LIN Y J,GUAN T W,et al.Diversities of culturable yeast and Bacillus and their relationship with process parameters during the production of Sichuan Luzhou-flavor Daqu[J].Food Science,2020,41(2):196-201.
[5] 樊奈昀,刘贵珊,张晶晶,等.Box-Behnken法冷鲜滩羊肉蛋白质的高光谱模型优化[J].光谱学与光谱分析,2021,41(3):918-923.
FAN N Y,LIU G S,ZHANG J J,et al.Hyperspectral model optimization for protein of Tan mutton based on Box-Behnken[J].Spectroscopy and Spectral Analysis,2021,41(3):918-923.
[6] PABLO A-M J,MARGARET K,TROND L,et al.Assessing the impact of illumination on UAV pushbroom hyperspectral imagery collected under various cloud cover conditions[J].Remote Sensing of Environment,2021,258:112396.
[7] 叶建秋,黄丹平,田建平,等.高光谱图像技术检测大曲发酵过程中的水分含量[J].食品与发酵工业,2020,46(9):250-254.
YE J Q,HUANG D P,TIAN J P,et al.Detection of water content in Daqu during fermentation using hyperspectral image technology[J].Food and Fermentation Industries,2020,46(9):250-254.
[8] 李鸿强,孙红,李民赞.基于高光谱的马铃薯微型种薯分类检测[J].分析测试学报,2020,39(11):1 421-1 426.
LI H Q,SUN H,LI M Z.Classification detection of potato micro seed based on hyperspectral[J].Journal of Chinese Analysis,2020,39(11):1 421-1 426.
[9] 何馥娴,蒙庆华,唐柳,等.高光谱成像技术在水果品质检测中的研究进展[J].果树学报,2021,38(9):1 590-1 599.
HE F X,MENG Q H,TANG L,et al.Research progress in hyperspectral imaging technology for fruit quality detection[J].Journal of Fruit Science,2021,38(9):1 590-1 599.
[10] 姜洪喆,蒋雪松,杨一,等.肉类掺杂掺假的高光谱成像检测研究进展[J].食品与发酵工业,2021,47(6):300-305.
JIANG H Z,JIANG X S,YANG Y,et al.The research progress on the detection of meats adulteration using hyperspectral imaging[J].Food and Fermentation Industries,2021,47(6):300-305.
[11] 王玉娜,李粉玲,王伟东,等.基于无人机高光谱的冬小麦氮素营养监测[J].农业工程学报,2020,36(22):31-39.
WANG Y N,LI F L,WANG W D,et al.Monitoring of winter wheat nitrogen nutrition based on UAV hyperspectral images[J].Transactions of the Chinese Society of Agricultural Engineering,2020,36(22):31-39.
[12] 王彩霞,王松磊,贺晓光,等.高光谱图谱融合检测羊肉中饱和脂肪酸含量[J].光谱学与光谱分析,2020,40(2):595-601.
WANG C X,WANG S L,HE X G,et al.Detection of saturated fatty acid content in mutton by using the fusion of hyperspectral spectrum and image information[J].Spectroscopy and Spectral Analysis,2020,40(2):595-601.
[13] 张骁,闫岩,王文辉,等.基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J].作物学报,2021,47(8):1 563-1 580.
ZHANG X,YAN Y,WANG W H,et al.Application of continuous wavelet analysis to laboratory reflectance spectra for the prediction of grain amylose content in rice[J].Acta Agronomica Sinica,2021,47(8):1 563-1 580.
[14] 卓伟,于旭峰,李欣庭,等.高光谱成像技术实现马铃薯叶片叶绿素无损检测[J].光学仪器,2020,42(6):1-8.
ZHOU W,YU X F,LI X T,et al.Non-destructive detection of potato leaf chlorophyll with hyperspectral imaging technology[J].Optical Instruments,2020,42(6):1-8.
[15] 张璐,茹晨雷,殷文俊,等.基于近红外高光谱成像结合分水岭算法鉴别酸枣仁药材的产地[J].药物分析杂志,2021,41(4):726-734.
ZHANG L,RU C L,YIN W J,et al.Identification of Ziziphi Spinosae Semen from different habitats based on near-infrared hyperspectral imaging technology and watershed algorithm[J].Chinese Journal of Pharmaceutical Analysis,2021,41(4):726-734.
[16] 王春雷,陈婉芝,卢彩云,等.基于高光谱成像的玉米收获后根茬行分割方法[J].农业机械学报,2020,51(S2):421-426.
WANG C L,CHEN W Z,LU C Y,et al.Segmentation method for maize stubble row based on hyperspectral image[J].Transactions of the Chinese Society for Agricultural Machinery,2020,51(S2):421-426.
[17] 孙宗保,梁黎明,李君奎,等.高光谱成像的冰鲜与冻融三文鱼鉴别研究[J].光谱学与光谱分析,2020,40(11):3 530-3 536.
SUN Z B,LIANG L M,LI J K,et al.Identification of chilled and frozen-thawed salmon based on hyperspectral imaging technology[J].Spectroscopy and Spectral Analysis,2020,40(11):3 530-3 536.
[18] 殷文俊,茹晨雷,郑洁,等.基于高光谱成像技术融合光谱和图像特征鉴别不同产地的甘草[J].中国中药杂志,2021,46(4):923-930.
YIN W J,RU C L,ZHENG J,et al.Fusion of spectrum and image features to identify Glycyrrhiza radix et rhizoma from different origins based on hyperspectral imaging technology[J].Chinese Journal of Traditional Chinese Medicine,2021,46(4):923-930.
[19] ZHANG W D,CAO A,S P,et al.Rapid evaluation of freshness of largemouth bass under different thawing methods using hyperspectral imaging[J].Food Control,2021,125:108023.
[20] CHEN X,LI M,YANG X,et al.Stacked denoise autoencoder based feature extraction and classification for hyperspectral images[J].Journal of Sensors,2015,2016:3632943.
[21] 刘雪莲,石雷,李宇宸,等.基于无人机高光谱影像的微甘菊分布提取研究——以云南德宏州为例[J].热带亚热带植物学报,2021,29(6):579-588.
LIU X L,SHI L,LI Y C,et al.Distribution extraction of mikania micrantha based on UAV hyperspectral image:A case study of Dehong Yunnan Province,China[J].Journal of Tropical and Subtropical Botany,2021,29(6):579-588.
[22] T.K C,LI L,MICHAEL N,et al.Hyperspectral imaging and chemometrics as a non-invasive tool to discriminate and analyze iodine value of pork fat[J].Food Control,2021,127:108145.
[23] HUANG H P,HU X J,TIAN J P,et al.Rapid detection of the reducing sugar and amino acid nitrogen contents of Daqu based on hyperspectral imaging[J].Journal of Food Composition and Analysis,2021,101:103970.
[24] 纪景纯,刘建立,牛玉洁,等.基于全波段高光谱的冬小麦生长参数估算方法比较[J].作物杂志,2020(6):180-188.
JI J C,LIU J L,LIU Y J,et al.Comparison of estimation methods for growth parameter of winter wheat based on full-band hyperspectral data[J].Crops,2020(6):180-188.
[25] 蔡凤娇,张娟,余汉超,等.清香型白酒机械化酿造过程中主要风味物质的生成规律研究[J].酿酒,2021,48(2):81-84.
CAI F J,ZHANG J,YU H C,et al.Study on the formation regularity of main flavor substances in the process of mechanical brewing of light-flavour Baijiu[J].Liquor Making,2021,48(2):81-84.
文章导航

/