复合益生菌产品菌种鉴定及活菌定量检测方法

  • 周立光 ,
  • 杨明喆 ,
  • 冯会粉 ,
  • 刘艺茹 ,
  • 刘蕊 ,
  • 张欣 ,
  • 葛媛媛 ,
  • 张旭光 ,
  • 刘佳奇 ,
  • 程坤 ,
  • 于学健 ,
  • 姚粟
展开
  • 1(中国食品发酵工业研究院有限公司,北京,100015)
    2(汤臣倍健有限公司,广东 广州,510663)
第一作者:周立光博士,工程师和杨明喆硕士,助理工程师为共同第一作者(姚粟教授级高级工程师为通信作者,E-mail:milly@china-cicc.org)

收稿日期: 2021-07-22

  修回日期: 2021-09-09

  网络出版日期: 2022-05-26

基金资助

汤臣倍健营养科学研究基金项目(TY0191105)

Study on methods of species identification and quantitative detection of viable cells in composite probiotics products

  • ZHOU Liguang ,
  • YANG Mingzhe ,
  • FENG Huifen ,
  • LIU Yiru ,
  • LIU Rui ,
  • ZHANG Xin ,
  • GE Yuanyuan ,
  • ZHANG Xuguang ,
  • LIU Jiaqi ,
  • CHENG Kun ,
  • YU Xuejian ,
  • YAO Su
Expand
  • 1(China National Research Institute of Food & Fermentation Industries Corporation Limited, Beijing 100015, China)
    2(Science and Technology Center, BYHEALTH Co.Ltd., Guangzhou 510663, China)

Received date: 2021-07-22

  Revised date: 2021-09-09

  Online published: 2022-05-26

摘要

复合益生菌产品的菌种组成与活菌数是产品质量的关键,该研究以2种市售复合益生菌固体饮料及其添加的5种(6株)益生菌为研究对象,采用宏基因组测序分析方法及平均核苷酸一致性(average nucleotide identity,ANI)在种水平上精确鉴定产品的菌种组成;通过筛选菌种特异性引物,优化叠氮溴化丙锭-荧光定量PCR (propidium monoazide-quantitative PCR,PMA-qPCR)方法参数,快速定量产品中每种益生菌的活菌数。结果表明,产品1宏基因组数据分箱获得的4个bins 分别被鉴定为动物双歧杆菌乳亚种、鼠李糖乳杆菌、发酵乳杆菌和短双歧杆菌,PMA-qPCR 定量检测其活菌数分别为4.86×109、4.33×109、3.95×108和6.38×106 CFU/g;产品2宏基因组数据分箱获得的4个bins分别被鉴定为鼠李糖乳杆菌、植物乳杆菌、发酵乳杆菌、动物双歧杆菌乳亚种,PMA-qPCR 定量检测其活菌数分别为3.12×109、1.53×109、9.36×108和4.16×108 CFU/g。PMA-qPCR方法定量2种产品乳酸菌的活菌总数与平板菌落计数结果相比,差异不显著(P>0.05);该研究在菌种水平上精确鉴定的产品微生物组成与产品声称一致。除短双歧杆菌外,其他5种菌的活菌数检测结果与实际添加量基本吻合。该研究在实现精确鉴定产品物种组成的同时,快速、特异、准确的定量了产品中每种乳酸菌的活菌数,为复合益生菌产品的质量控制提供了技术支持。

本文引用格式

周立光 , 杨明喆 , 冯会粉 , 刘艺茹 , 刘蕊 , 张欣 , 葛媛媛 , 张旭光 , 刘佳奇 , 程坤 , 于学健 , 姚粟 . 复合益生菌产品菌种鉴定及活菌定量检测方法[J]. 食品与发酵工业, 2022 , 48(9) : 235 -244 . DOI: 10.13995/j.cnki.11-1802/ts.028734

Abstract

The composition of probiotic species and the number of viable cells are essential to the quality of composite probiotics products. Two commercial composite probiotic solid beverages and five probiotic species (six strains) contained in the products were studied in this research. The metagenomic sequencing and the average nucleotide identity (ANI) analysis were conducted to accurately identify probiotic composition at the species level. Through selection of species-specific PCR primers and optimization of key parameters of propidium monoazide-quantitative PCR (PMA-qPCR) method, the number of viable probiotic cells of each species were quantitatively detected. The results showed that four bins obtained from the metagenomic data of product 1 were identified as Bifidobacterium animalis subsp. lactis, Lactobacillus rhamnosus, Lactobacillus fermentum, and Bifidobacterium breve, and the number of viable cells detected by PMA-qPCR were 4.86×109, 4.33×109, 3.95×108 and 6.38×106 CFU/g respectively. Four bins obtained from metagenomic data of product 2 were identified as L. rhamnosus, L. plantarum, L. fermentum, and B. animalis subsp. lactis, and the number of viable cells were 3.12×109, 1.53×109, 9.36×108 and 4.16×108 CFU/g respectively. There were no significant differences (P>0.05) between the results of total viable counts in two products obtained by PMA-qPCR method and plate counting method. The probiotics identification results at the species level in this study are consistent with the products' claims. Except for Bifidobacterium breve, the detection results of the number of viable cells for other five species were basically consistent with the products addition. The methods applied in this study can accurately identify the species composition, and can quickly, specifically and accurately quantify the number of viable cells of each probiotic species in the products, which could provide technical support for the quality control of composite probiotic products.

参考文献

[1] ARAYA M, MORELLI L, REID G, et al.Guidelines for the evaluation of probiotics in food[EB/OL]. 2002.www.fao.org.
[2] 魏长浩, 邓泽元.益生菌及其应用研究进展[J].乳业科学与技术, 2018, 41(1):26-32.
WEI C H, DENG Z Y.Advances in probiotics research and its application[J].Journal of Dairy Science and Technology, 2018, 41(1):26-32.
[3] MCFARLAND L V, EVANS C T, GOLDSTEIN E J C.Strain-specificity and disease-specificity of probiotic efficacy:A systematic review and meta-analysis[J].Frontiers in Medicine, 2018, 5:124.
[4] GOLDSTEIN E J C, CITRON D M, CLAROS M C, et al.Bacterial counts from five over-the-counter probiotics:Are you getting what you paid for? [J].Anaerobe, 2014, 25:1-4.
[5] YEUNG P S M, KITTS C L, CANO R, et al.Application of genotypic and phenotypic analyses to commercial probiotic strain identity and relatedness[J].Journal of Applied Microbiology, 2004, 97(5):1 095-1 104.
[6] WENNING M, BREITENWIESER F, KONRAD R, et al.Identification and differentiation of food-related bacteria:a comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry[J].Journal of Microbiological Methods, 2014, 103:44-52.
[7] KIM M, OH H S, PARK S C, et al.Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes[J].International Journal of Systematic and Evolutionary Microbiology, 2014, 64(2):346-351.
[8] NASER S M, DAWYNDT P, HOSTE B, et al.Identification of lactobacilli by pheS and rpoA gene sequence analyses[J].International Journal of Systematic and Evolutionary Microbiology, 2007, 57(12):2 777-2 789.
[9] RICHTER M, ROSSELLÓ-MÓRA R.Shifting the genomic gold standard for the prokaryotic species definition[J].Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(45):191 26-19 131.
[10] MOROVIC W, HIBBERD A A, ZABEL B, et al.Genotyping by PCR and high-throughput sequencing of commercial probiotic products reveals composition biases[J].Frontiers in Microbiology, 2016, 7:1747.
[11] LUGLI G A, MANGIFESTA M, MANCABELLI L, et al.Compositional assessment of bacterial communities in probiotic supplements by means of metagenomic techniques[J].International Journal of Food Microbiology, 2019, 294:1-9.
[12] WILKINSON M G.Flow cytometry as a potential method of measuring bacterial viability in probiotic products:A review[J].Trends in Food Science & Technology, 2018, 78:1-10.
[13] MATSUDA K, TSUJI H, ASAHARA T, et al.Establishment of an analytical system for the human fecal microbiota, based on reverse transcription-quantitative PCR targeting of multicopy rRNA molecules[J].Applied and Environmental Microbiology, 2009, 75(7):1 961-1 969.
[14] KIM S Y, KO G.Using propidium monoazide to distinguish between viable and nonviable bacteria, MS2 and murine Norovirus[J].Letters in Applied Microbiology, 2012, 55(3):182-188.
[15] ERKUS O, DE JAGER V C L, GEENE R T C M, et al.Use of propidium monoazide for selective profiling of viable microbial cells during Gouda cheese ripening[J].International Journal of Food Microbiology, 2016, 228:1-9.
[16] FUJIMOTO J, TANIGAWA K, KUDO Y, et al.Identification and quantification of viable Bifidobacterium breve strain Yakult in human faeces by using strain-specific primers and propidium monoazide[J].Journal of Applied Microbiology, 2011, 110(1):209-217.
[17] GOLPAYEGANI A, DOURAGHI M, REZAEI F, et al.Propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) assay for rapid detection of viable and viable but non-culturable (VBNC) Pseudomonas aeruginosa in swimming pools[J].Journal of Environmental Health Science & Engineering, 2019, 17(1):407-416.
[18] FERNÁNDEZ RAMÍREZ M D, KOSTOPOULOS I, SMID E J, et al.Quantitative assessment of viable cells of Lactobacillus plantarum strains in single, dual and multi-strain biofilms[J].International Journal of Food Microbiology, 2017, 244:43-51.
[19] LI B G, CHEN J Q.Development of a sensitive and specific qPCR assay in conjunction with propidium monoazide for enhanced detection of live Salmonella spp.in food[J].BMC Microbiology, 2013, 13:273.
[20] ZHENG J S, WITTOUCK S, SALVETTI E, et al.A taxonomic note on the genus Lactobacillus:Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae[J].International Journal of Systematic and Evolutionary Microbiology, 2020, 70(4):2 782-2 858.
[21] SCARIOT M C, VENTURELLI G L, PRUDêNCIO E S, et al.Quantification of Lactobacillus paracasei viable cells in probiotic yoghurt by propidium monoazide combined with quantitative PCR[J].International Journal of Food Microbiology, 2018, 264:1-7.
[22] CHEN S F, ZHOU Y Q, CHEN Y R, et al.Fastp:an ultra-fast all-in-one FASTQ preprocessor[J].Bioinformatics, 2018, 34(17):i884-i890.
[23] MAGOČ T, SALZBERG S L.FLASH:fast length adjustment of short reads to improve genome assemblies[J].Bioinformatics (Oxford, England), 2011, 27(21):2 957-2 963.
[24] EDGAR R C.UPARSE:highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods, 2013, 10:996-998.
[25] WANG Q, GARRITY G M, TIEDJE J M, et al.Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J].Applied and Environmental Microbiology, 2007, 73(16):5 261-5 267.
[26] URITSKIY G V, DIRUGGIERO J, TAYLOR J.MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis[J].Microbiome, 2018, 6(1):158.
[27] PARKS D H, IMELFORT M, SKENNERTON C T, et al.CheckM:assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes[J].Genome Research, 2015, 25(7):1 043-1 055.
[28] GOBERT G, COTILLARD A, FOURMESTRAUX C, et al.Droplet digital PCR improves absolute quantification of viable lactic acid bacteria in faecal samples[J].Journal of Microbiological Methods, 2018, 148:64-73.
[29] MATSUKI T, WATANABE K, FUJIMOTO J, et al.Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria[J].Applied and Environmental Microbiology, 2004, 70(1):167-173.
[30] DESFOSSÉS-FOUCAULT E, DUSSAULT-LEPAGE V, LE BOUCHER C, et al.Assessment of probiotic viability during cheddar cheese manufacture and ripening using propidium monoazide-PCR quantification[J].Frontiers in Microbiology, 2012, 3:350.
[31] GARG K B, GANGULI I, DAS R, et al.Spectrum of Lactobacillus species present in healthy vagina of Indian women[J].The Indian Journal of Medical Research, 2009, 129(6):652-657.
[32] MANSOUR N M, ISMAIL N A.Quantitative of intestinal microbial lactobacillus and bacteroides groups and the prevalence of their selected species among egyptian obese subjects[J].Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2016, 7(5):436-445.
[33] SLIMANI S, ROBYNS A, JARRAUD S, et al.Evaluation of propidium monoazide (PMA) treatment directly on membrane filter for the enumeration of viable but non cultivable Legionella by qPCR[J].Journal of Microbiological Methods, 2012, 88(2):319-321.
文章导航

/