[1] ALSHANNAQ A F, GIBBONS J G, LEE M K, et al.Controlling aflatoxin contamination and propagation of Aspergillus flavus by a soy-fermenting Aspergillus oryzae strain[J].Scientific Reports, 2018, 8(1):16871.
[2] MEDINA A, RODRIGUEZ A, MAGAN N.Effect of climate change on Aspergillus flavus and aflatoxin B1 production[J].Frontiers in Microbiology, 2014, 5:348.
[3] 杨博磊, 耿海荣, 王刚, 等.我国花生土壤黄曲霉菌分布与产后花生黄曲霉毒素污染相关性研究[J].核农学报, 2021, 35(4):863-869.
YANG B L, GENG H R, WANG G, et al.The relationship between Aspergillus flavus in peanut soil and aflatoxin contamination of peanut in China[J].Journal of Nuclear Agricultural Sciences, 2021, 35(4):863-869.
[4] YU J J, PAYNE G A, NIERMAN W C, et al.Aspergillus flavus genomics as a tool for studying the mechanism of aflatoxin formation[J].Food Additives & Contaminants.Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2008, 25(9):1 152-1 157.
[5] 王婧莹, 王琢, 闫培生.黄曲霉毒素的脱毒研究进展[J].中国农业科技导报, 2019, 21(4):42-51.
WANG J Y, WANG Z, YAN P S.Research progress on aflatoxin detoxification[J].Journal of Agricultural Science and Technology, 2019, 21(4):42-51.
[6] RAJASEKARAN K, SAYLER R J, SICKLER C M, et al.Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182[J].Plant Science, 2018, 270:150-156.
[7] 周建烈, 张兴权.抗菌肽在维生素D免疫调节功能中的作用[J].食品与营养科学, 2020, 9(2):182-186.
ZHOU J L, ZHANG X Q.The role of cathelicidin in the immune regulation of vitamin D[J].Hans Journal of Food and Nutrition Science, 2020, 9(2):182-186.
[8] MA W B, ZHAO L L, XIE Y L.Inhibitory effect of (E)-2-hexenal as a potential natural fumigant on Aspergillus flavus in stored peanut seeds[J].Industrial Crops and Products, 2017, 107:206-210.
[9] RAI M, PANDIT R, GAIKWAD S, et al.Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food[J].Journal of Food Science and Technology, 2016, 53(9):3 381-3 394.
[10] TENEA G N, DELGADO POZO T.Antimicrobial peptides from Lactobacillus plantarum UTNGt2 prevent harmful bacteria growth on fresh tomatoes[J].Journal of Microbiology and Biotechnology, 2019, 29(10):1 553-1 560.
[11] LIU J H, XIONG H, DU Y H, et al.NisI maturation and its influence on Nisin resistance in Lactococcus lactis[J].Applied and Environmental Microbiology China, 2020, 86(19).e01306-e01320.
[12] 赵欣宇, 国果, 苏佩佩, 等.家蝇抗菌肽AMP-17对白色念珠菌菌丝的抑制作用[J].微生物学通报, 2020, 47(3):843-851.
ZHAO X Y, GUO G, SU P P, et al.Inhibitory effect of housefly antimicrobial peptide AMP-17 on hyphae of Candida albicans[J].Microbiology China, 2020, 47(3):843-851.
[13] YANG L B, GUO G, ZHAO X Y, et al.Antifungal activity and physicochemical properties of a novel antimicrobial protein AMP-17 from Musca domestica[J].Polish Journal of Microbiology, 2019, 68(3):383-390.
[14] 宋小娟, 杨隆兵, 刘仁明, 等.抗菌肽AMP-17的抗菌活性及其对草莓低温贮藏品质的影响[J].北方园艺, 2021(11):44-50.
SONG X J, YANG L B, LIU R M, et al.Antibacterial activity of antimicrobial peptide AMP-17 and its effect on strawberry cryopreservation quality impact[J].Northern Horticulture, 2021(11):44-50.
[15] BEN TAHEUR F, MANSOUR C, KOUIDHI B, et al.Use of lactic acid bacteria for the inhibition of Aspergillus flavus and Aspergillus carbonarius growth and mycotoxin production[J].Toxicon, 2019, 166:15-23.
[16] 杨隆兵, 国果, 马慧玲, 等.家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测[J].中国生物工程杂志, 2019, 39(4):24-31.
YANG L B, GUO G, MA H L, et al.Optimization of prokaryotic expression conditions and antifungal activity detection of antibacterial peptide AMPs17 protein in Musca domestica[J].China Biotechnology, 2019, 39(4):24-31.
[17] PARK S I,YOE S M.A novel cecropin-like peptide from black soldier fly, Hermetia illucens:Isolation, structural and functional characterization[J].Entomological Research, 2017, 47(2):115-124.
[18] 张晓君, 路来风, 李淑华, 等.Streptomyces alboflavus TD-1产挥发性抑菌物质对黄曲霉菌生长及其毒素的抑制作用[J].食品科学,2021,42(18):51-57.
ZHANG X J, LU L F, LI S H, et al.Effects of volatile organic compounds from Streptomyces alboflavus TD-1 against Aspergillus flavus growth and aflatoxin production[J].Food Science,2021,42(18):51-57.
[19] 王同, 谢华里, 王婷, 等.非脱羧勒克菌wt16对黄曲霉菌生长与产毒的抑制作用[J].食品工业科技, 2018, 39(16):80-86.
WANG T, XIE H L, WANG T, et al.Inhibition effect of Leclercia adecarboxylata strain wt16 on the growth and aflatoxin production of Aspergillus flavus[J].Science and Technology of Food Industry, 2018, 39(16):80-86.
[20] 徐杨玉, 刘付香, 洪彦彬, 等.绿色木霉对花生黄曲霉毒素污染的防治[J].热带生物学报, 2019, 10(4):367-371.
XU Y Y, LIU F X, HONG Y B, et al.Guangdong agribusiness tropical agriculture research institute Co., Ltd[J].Journal of Tropical Biology, 2019, 10(4):367-371.
[21] GANDOMI H, MISAGHI A, BASTI A A, et al.Effect of Zataria multiflora Boiss.essential oil on colony morphology and ultrastructure of Aspergillus flavus[J].Mycoses, 2011, 54(5):e429-e437.
[22] 尚艳娥, 杨卫民.CAC、欧盟、美国与中国粮食中真菌毒素限量标准的差异分析[J].食品科学技术学报, 2019, 37(1):10-15.
SHANG Y E, YANG W M.Variation analysis of cereals mycotoxin limit standards of CAC, EU, USA, and China[J].Journal of Food Science and Technology, 2019, 37(1):10-15.
[23] 孙琦. 肉桂醛对黄曲霉菌生长和产毒的影响机制研究[D].北京:中国农业科学院, 2016.
SUN Q.The study on the mechanism for the cinnamaldehyde-caused inhibition of fungal growth and aflatoxin biosynthesis of Aspergillus flavus[D].Beijing:Chinese Academy of Agricultural Sciences, 2016.
[24] 徐杨玉, 梁炫强, 李玲.环境胁迫影响黄曲霉毒素合成研究进展[J].广东农业科学, 2011,38(S1):38-41;49.
XU Y Y, LIANG X Q, LI L.Advances of enviromental stress on the synthesis of aflatoxin[J].Guangdong Agricultural Sciences, 2011,38(S1):38-41;49.
[25] 吕昂. 小麦PINA蛋白体外表达及其抗黄曲霉作用研究[D].郑州:河南工业大学, 2019.
LYU A.Expression of wheat PINA protein in vitro and its antifungal effect against Aspergillus flavus[D].Zhengzhou:Henan University of Technology, 2019.
[26] 蒋立科, 罗曼.柠檬醛抗黄曲霉作用的分子机理[J].生命科学研究, 2005,9(S1):81-94.
JIANG L K, LUO M.Molecular mechanism of inhibitory effects of citral on Aspergillus flavus[J].Life Science Research, 2005,9(S1):81-94.
[27] 马芳芬, 殷海成.枯草芽孢杆菌及其杆菌霉素D对黄曲霉毒素作用机制的研究进展[J].粮食与饲料工业, 2016(4):48-50;54.
MA F F, YIN H C.Research progress on the inhibition mechanism of Bacillus subtilis and bacillimycin D against aflatoxin[J].Cereal and Feed Industry, 2016(4):48-50;54.
[28] MA H L, ZHAO X Y, YANG L B, et al.Antimicrobial peptide AMP-17 affects Candida albicans by disrupting its cell wall and cell membrane integrity[J].Infection and Drug Resistance, 2020, 13:2 509-2 520.