研究报告

抗菌肽AMP-17对黄曲霉抑制作用的初步研究

  • 朱丽娟 ,
  • 国果 ,
  • 田竺青 ,
  • 孙朝琴 ,
  • 杨隆兵 ,
  • 黄明娇 ,
  • 刘鉴 ,
  • 彭建 ,
  • 石帮慧
展开
  • 1(贵州医科大学 基础医学院,现代病原生物学重点特色实验室,贵州 贵阳,550025)
    2(贵州医科大学,转化医学研究中心,贵州 贵阳,550025)
    3(贵州医科大学 生物与工程学院,环境污染监测与疾病控制重点实验室,贵州 贵阳,550025)
    4(贵州医科大学 公共卫生与健康学院,贵州 贵阳,550025)
第一作者:硕士研究生(国果教授为通信作者,E-mail:guoguojsc@163.com)

收稿日期: 2021-07-29

  修回日期: 2021-09-11

  网络出版日期: 2022-06-10

基金资助

国家自然科学基金资助项目(81760647)

Preliminary study on the inhibitory effect of antibacterial peptide AMP-17 on Aspergillus flavus

  • ZHU Lijuan ,
  • GUO Guo ,
  • TIAN Zhuqing ,
  • SUN Chaoqin ,
  • YANG Longbing ,
  • HUANG Mingjiao ,
  • LIU Jian ,
  • PENG Jian ,
  • SHI Banghui
Expand
  • 1(School of Basic Medical Sciences, Key Laboratory of Modern Pathogen Biology, Department of Parasitology, Guizhou Medical University, Guiyang 550025, China)
    2(Translational Medicine Research, Guizhou Medical University, Guiyang 550025, China)
    3(School of Biology and Engineering, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang 550025, China)
    4(School of Public Health and Wellness, Guizhou Medical University, Guiyang 550025, China)

Received date: 2021-07-29

  Revised date: 2021-09-11

  Online published: 2022-06-10

摘要

探讨抗菌肽AMP-17对食源性微生物黄曲霉孢子萌发、菌丝生长、产毒等的影响。通过微量液体稀释法测定AMP-17对黄曲霉最低抑菌浓度(minimum inhibitory concentration,MIC)并绘制生长曲线。血球计数板及干重法计算经AMP-17作用后,黄曲霉的孢子萌发率、菌丝生长抑制率。酶联免疫吸附法分析AMP-17对黄曲霉毒素产量的影响。扫描电镜观察AMP-17作用后黄曲霉孢子及菌丝体的形态结构变化。结果显示,AMP-17对黄曲霉的MIC为50 μg/mL;生长曲线显示其能显著抑制黄曲霉的生长;50 μg/mL AMP-17作用后黄曲霉孢子萌发率为8%,菌丝抑制率可达72.5%;低浓度的AMP-17即可显著降低黄曲霉毒素的合成;经AMP-17干预后,黄曲霉孢子及菌丝形态结构均遭到明显破坏。因此AMP-17对黄曲霉的生长及产毒具有显著抑制作用。该研究结果为AMP-17应用于食品防腐提供了实验依据,可进一步丰富食物防腐剂种类。

本文引用格式

朱丽娟 , 国果 , 田竺青 , 孙朝琴 , 杨隆兵 , 黄明娇 , 刘鉴 , 彭建 , 石帮慧 . 抗菌肽AMP-17对黄曲霉抑制作用的初步研究[J]. 食品与发酵工业, 2022 , 48(10) : 64 -69 . DOI: 10.13995/j.cnki.11-1802/ts.028811

Abstract

To explore the effect of antimicrobial peptide AMP-17 on the spore germination, mycelial growth, and toxin production of food-borne microorganism Aspergillus flavus, the minimum inhibitory concentration (MIC) of AMP-17 against A. flavus was determined by the micro-liquid dilution method and the growth curve was drawn. The spore germination rate and mycelial growth inhibition rate of A. flavus were calculated by hemocytometer and dry weight method after AMP-17 treatment. Enzyme linked immunosorbent assay was used to analyze the effect of AMP-17 on the production of aflatoxin. The morphological and structural changes of A. flavus spores and mycelium were observed by scanning electron microscope. The results showed that the minimum inhibitory concentration of AMP-17 against Aspergillus flavus was 50 μg/mL and the peptide could significantly inhibit the growth of A. flavus. After 50 μg/mL of AMP-17 treatment, the spore germination rate and the mycelial inhibition rate of A. flavus could reach 8% and 72.5%. In addition, low concentration of AMP-17 could significantly reduce the synthesis of aflatoxin. After the intervention of AMP-17, the morphological structure of A. flavus spores and hyphae were obviously damaged. AMP-17 had a significant inhibitory effect on the growth and toxin production of A. flavus. The results provided an experimental basis for the application of AMP-17 to food preservatives, which could further enrich the types of food preservatives.

参考文献

[1] ALSHANNAQ A F, GIBBONS J G, LEE M K, et al.Controlling aflatoxin contamination and propagation of Aspergillus flavus by a soy-fermenting Aspergillus oryzae strain[J].Scientific Reports, 2018, 8(1):16871.
[2] MEDINA A, RODRIGUEZ A, MAGAN N.Effect of climate change on Aspergillus flavus and aflatoxin B1 production[J].Frontiers in Microbiology, 2014, 5:348.
[3] 杨博磊, 耿海荣, 王刚, 等.我国花生土壤黄曲霉菌分布与产后花生黄曲霉毒素污染相关性研究[J].核农学报, 2021, 35(4):863-869.
YANG B L, GENG H R, WANG G, et al.The relationship between Aspergillus flavus in peanut soil and aflatoxin contamination of peanut in China[J].Journal of Nuclear Agricultural Sciences, 2021, 35(4):863-869.
[4] YU J J, PAYNE G A, NIERMAN W C, et al.Aspergillus flavus genomics as a tool for studying the mechanism of aflatoxin formation[J].Food Additives & Contaminants.Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2008, 25(9):1 152-1 157.
[5] 王婧莹, 王琢, 闫培生.黄曲霉毒素的脱毒研究进展[J].中国农业科技导报, 2019, 21(4):42-51.
WANG J Y, WANG Z, YAN P S.Research progress on aflatoxin detoxification[J].Journal of Agricultural Science and Technology, 2019, 21(4):42-51.
[6] RAJASEKARAN K, SAYLER R J, SICKLER C M, et al.Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182[J].Plant Science, 2018, 270:150-156.
[7] 周建烈, 张兴权.抗菌肽在维生素D免疫调节功能中的作用[J].食品与营养科学, 2020, 9(2):182-186.
ZHOU J L, ZHANG X Q.The role of cathelicidin in the immune regulation of vitamin D[J].Hans Journal of Food and Nutrition Science, 2020, 9(2):182-186.
[8] MA W B, ZHAO L L, XIE Y L.Inhibitory effect of (E)-2-hexenal as a potential natural fumigant on Aspergillus flavus in stored peanut seeds[J].Industrial Crops and Products, 2017, 107:206-210.
[9] RAI M, PANDIT R, GAIKWAD S, et al.Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food[J].Journal of Food Science and Technology, 2016, 53(9):3 381-3 394.
[10] TENEA G N, DELGADO POZO T.Antimicrobial peptides from Lactobacillus plantarum UTNGt2 prevent harmful bacteria growth on fresh tomatoes[J].Journal of Microbiology and Biotechnology, 2019, 29(10):1 553-1 560.
[11] LIU J H, XIONG H, DU Y H, et al.NisI maturation and its influence on Nisin resistance in Lactococcus lactis[J].Applied and Environmental Microbiology China, 2020, 86(19).e01306-e01320.
[12] 赵欣宇, 国果, 苏佩佩, 等.家蝇抗菌肽AMP-17对白色念珠菌菌丝的抑制作用[J].微生物学通报, 2020, 47(3):843-851.
ZHAO X Y, GUO G, SU P P, et al.Inhibitory effect of housefly antimicrobial peptide AMP-17 on hyphae of Candida albicans[J].Microbiology China, 2020, 47(3):843-851.
[13] YANG L B, GUO G, ZHAO X Y, et al.Antifungal activity and physicochemical properties of a novel antimicrobial protein AMP-17 from Musca domestica[J].Polish Journal of Microbiology, 2019, 68(3):383-390.
[14] 宋小娟, 杨隆兵, 刘仁明, 等.抗菌肽AMP-17的抗菌活性及其对草莓低温贮藏品质的影响[J].北方园艺, 2021(11):44-50.
SONG X J, YANG L B, LIU R M, et al.Antibacterial activity of antimicrobial peptide AMP-17 and its effect on strawberry cryopreservation quality impact[J].Northern Horticulture, 2021(11):44-50.
[15] BEN TAHEUR F, MANSOUR C, KOUIDHI B, et al.Use of lactic acid bacteria for the inhibition of Aspergillus flavus and Aspergillus carbonarius growth and mycotoxin production[J].Toxicon, 2019, 166:15-23.
[16] 杨隆兵, 国果, 马慧玲, 等.家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测[J].中国生物工程杂志, 2019, 39(4):24-31.
YANG L B, GUO G, MA H L, et al.Optimization of prokaryotic expression conditions and antifungal activity detection of antibacterial peptide AMPs17 protein in Musca domestica[J].China Biotechnology, 2019, 39(4):24-31.
[17] PARK S I,YOE S M.A novel cecropin-like peptide from black soldier fly, Hermetia illucens:Isolation, structural and functional characterization[J].Entomological Research, 2017, 47(2):115-124.
[18] 张晓君, 路来风, 李淑华, 等.Streptomyces alboflavus TD-1产挥发性抑菌物质对黄曲霉菌生长及其毒素的抑制作用[J].食品科学,2021,42(18):51-57.
ZHANG X J, LU L F, LI S H, et al.Effects of volatile organic compounds from Streptomyces alboflavus TD-1 against Aspergillus flavus growth and aflatoxin production[J].Food Science,2021,42(18):51-57.
[19] 王同, 谢华里, 王婷, 等.非脱羧勒克菌wt16对黄曲霉菌生长与产毒的抑制作用[J].食品工业科技, 2018, 39(16):80-86.
WANG T, XIE H L, WANG T, et al.Inhibition effect of Leclercia adecarboxylata strain wt16 on the growth and aflatoxin production of Aspergillus flavus[J].Science and Technology of Food Industry, 2018, 39(16):80-86.
[20] 徐杨玉, 刘付香, 洪彦彬, 等.绿色木霉对花生黄曲霉毒素污染的防治[J].热带生物学报, 2019, 10(4):367-371.
XU Y Y, LIU F X, HONG Y B, et al.Guangdong agribusiness tropical agriculture research institute Co., Ltd[J].Journal of Tropical Biology, 2019, 10(4):367-371.
[21] GANDOMI H, MISAGHI A, BASTI A A, et al.Effect of Zataria multiflora Boiss.essential oil on colony morphology and ultrastructure of Aspergillus flavus[J].Mycoses, 2011, 54(5):e429-e437.
[22] 尚艳娥, 杨卫民.CAC、欧盟、美国与中国粮食中真菌毒素限量标准的差异分析[J].食品科学技术学报, 2019, 37(1):10-15.
SHANG Y E, YANG W M.Variation analysis of cereals mycotoxin limit standards of CAC, EU, USA, and China[J].Journal of Food Science and Technology, 2019, 37(1):10-15.
[23] 孙琦. 肉桂醛对黄曲霉菌生长和产毒的影响机制研究[D].北京:中国农业科学院, 2016.
SUN Q.The study on the mechanism for the cinnamaldehyde-caused inhibition of fungal growth and aflatoxin biosynthesis of Aspergillus flavus[D].Beijing:Chinese Academy of Agricultural Sciences, 2016.
[24] 徐杨玉, 梁炫强, 李玲.环境胁迫影响黄曲霉毒素合成研究进展[J].广东农业科学, 2011,38(S1):38-41;49.
XU Y Y, LIANG X Q, LI L.Advances of enviromental stress on the synthesis of aflatoxin[J].Guangdong Agricultural Sciences, 2011,38(S1):38-41;49.
[25] 吕昂. 小麦PINA蛋白体外表达及其抗黄曲霉作用研究[D].郑州:河南工业大学, 2019.
LYU A.Expression of wheat PINA protein in vitro and its antifungal effect against Aspergillus flavus[D].Zhengzhou:Henan University of Technology, 2019.
[26] 蒋立科, 罗曼.柠檬醛抗黄曲霉作用的分子机理[J].生命科学研究, 2005,9(S1):81-94.
JIANG L K, LUO M.Molecular mechanism of inhibitory effects of citral on Aspergillus flavus[J].Life Science Research, 2005,9(S1):81-94.
[27] 马芳芬, 殷海成.枯草芽孢杆菌及其杆菌霉素D对黄曲霉毒素作用机制的研究进展[J].粮食与饲料工业, 2016(4):48-50;54.
MA F F, YIN H C.Research progress on the inhibition mechanism of Bacillus subtilis and bacillimycin D against aflatoxin[J].Cereal and Feed Industry, 2016(4):48-50;54.
[28] MA H L, ZHAO X Y, YANG L B, et al.Antimicrobial peptide AMP-17 affects Candida albicans by disrupting its cell wall and cell membrane integrity[J].Infection and Drug Resistance, 2020, 13:2 509-2 520.
文章导航

/