分析与检测

气相色谱-质谱联用法研究枇杷蜂蜜成熟过程中低聚糖含量变化规律

  • 王玉涵 ,
  • 王欣然 ,
  • 吉挺 ,
  • 陆超丽 ,
  • 吴殿军 ,
  • 师丰丰 ,
  • 周金慧
展开
  • 1(中国农业科学院蜜蜂研究所,北京,100093)
    2(扬州大学 动物科学与技术学院,江苏 扬州,225000)
    3(昭平县农村社会事业促进站,广西 贺州,546800)
    4(农业农村部蜂产品质量安全控制重点实验室,北京,100093)
    5(农业农村部蜂产品质量安全风险评估实验室,北京,100093)
第一作者:硕士研究生(周金慧研究员为通信作者,E-mail:zhoujinhui@caas.cn)

收稿日期: 2021-08-12

  修回日期: 2021-10-27

  网络出版日期: 2022-10-17

基金资助

国家自然科学基金面上项目(32172305);中国农业科学院创新工程项目(CAAS-ASTIP-2020-IAR);中国特色农产品风险评估专项(GJFP2020005);中国蜂产业技术体系(CARS-44-KXJ8)

The study of oligosaccharides in loquat honey during maturation by gas chromatography-mass spectrometry

  • WANG Yuhan ,
  • WANG Xinran ,
  • JI Ting ,
  • LU Chaoli ,
  • WU Dianjun ,
  • SHI Fengfeng ,
  • ZHOU Jinhui
Expand
  • 1(Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China)
    2(College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China)
    3(Rural Social Undertakings Promotion Station of Zhaoping County, Hezhou 546800, China)
    4(Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing 100093, China)
    5(Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China)

Received date: 2021-08-12

  Revised date: 2021-10-27

  Online published: 2022-10-17

摘要

该研究以苯基-β-D-葡萄糖苷作为内标物,经盐酸羟胺肟化-六甲基二硅胺烷和三氟乙酸酐硅烷化,内标法定量,建立气相色谱-质谱联用法测定枇杷蜂蜜中17种低聚糖含量并分析其变化规律。以苯基-β-D-葡萄糖苷为替代物进行方法学评价,结果表明该方法准确度高、精密度好,可用于枇杷蜂蜜样品中低聚糖的分析测定。枇杷花蜜和成熟过程中枇杷蜂蜜样品中低聚糖含量分析结果表明,枇杷花蜜中检出6种低聚糖,枇杷蜂蜜中检测出11种低聚糖。枇杷花蜜和枇杷蜂蜜中蔗糖含量均最高。除蔗糖外,枇杷花蜜干重中蔗果三糖含量最高,可达0.80 g/100g;枇杷蜂蜜干重中吡喃葡糖基蔗糖含量最高,可达6.84 g/100g。在枇杷蜂蜜干重中,随酿造时间的延长,二糖中的蔗糖含量呈下降趋势并在酿造14 d时含量达最低水平;其他二糖含量均呈上升趋势,麦芽糖和黑曲霉二糖在酿造15 d时含量上升至最高;松二糖、异麦芽糖、异麦芽酮糖和α,β-海藻糖在酿造14 d时达到最高含量之后含量无显著性差异;三糖含量呈波动变化,其中吡喃葡糖基蔗糖在酿造15 d时达最高含量。该研究为选择合理的枇杷蜂蜜采收时间以及成熟枇杷蜂蜜的真实性鉴别提供技术支持。

本文引用格式

王玉涵 , 王欣然 , 吉挺 , 陆超丽 , 吴殿军 , 师丰丰 , 周金慧 . 气相色谱-质谱联用法研究枇杷蜂蜜成熟过程中低聚糖含量变化规律[J]. 食品与发酵工业, 2022 , 48(18) : 235 -243 . DOI: 10.13995/j.cnki.11-1802/ts.028996

Abstract

A method was developed for the simultaneous determination of 17 oligosaccharides in loquat honey by GC-MS. Phenyl-β-D-glucopyranoside was used as an internal standard to quantify the occurrence of oligosaccharides in loquat honey. The oligosaccharides of loquat honey were extracted by 80% ethanol and then followed by two-step derivatization which including oximation with hydroxylamine hydrochloride and silylation with hexamethyldisilazane. The oligosaccharide derivatives were analyzed by GC-MS and phenyl-β-D-glucopyranoside was used as a surrogate to validate the developed method. The results showed that the method was accurate and precise, and suitably analyzed oligosaccharides and dynamics of rules in the maturation process of loquat honey. The results showed that six and eleven kinds of oligosaccharides could be detected in loquat nectar and loquat honey, respectively. Sucrose content was the highest both in loquat nectar and loquat honey. Expect sucrose, the content of 1-kestose was the highest in loquat nectar (dry weight 0.80 g/100g); the content of erlose was the highest in loquat honey (dry weight 6.84 g/100g). As the maturing of loquat honey, the content of sucrose in the loquat honey dry weight continuously decreased and reached the lowest level at 14 d of brewing, while there was no significant difference between the contents of 14 d and 15 d. The content of other disaccharides also showed an increasing trend. Thereinto, maltose and nigerose had the highest content at 15 d of brewing; and other disaccharides (turanose, isomaltose, isomaltulose and α,β-trehalose) had the highest content at 14 d of brewing. The contents of trisaccharides fluctuated and erlose reached the highest at 15 d of brewing. This study provides a reference for the reasonable harvest time of loquat honey and identifying matured loquat honey.

参考文献

[1] 章彬佳, 程春生, 胡福良.蜂蜜中几种常见酶的研究进展[J].蜜蜂杂志, 2007, 27(6):11-13.
ZHANG B J, CHENG C S, HU F L.Research progress of several common enzymes in honey[J].Journal of Bee, 2007, 27(6):11-13.
[2] 龚蜜.枇杷蜜[J].蜜蜂杂志, 1993, 13(3):6-7.
GONG M.Loquat honey[J].Journal of Bee, 1993, 13(3):6-7.
[3] 邹月, 黄金凤, 魏琴.功能性低聚糖的研究进展及应用现状[J].中国调味品, 2021, 46(2):180-185;195.
ZOU Y, HUANG J F, WEI Q.Research progress and application status of functional oligosaccharides[J].China Condiment, 2021, 46(2):180-185;195.
[4] MAO B Y, LI D Y, ZHAO J X, et al.Metagenomic insights into the effects of fructo-oligosaccharides (FOS) on the composition of fecal microbiota in mice[J].Journal of Agricultural and Food Chemistry, 2015, 63(3):856-863.
[5] ZHAO S, PENG X, ZHOU Q Y, et al.Bacillus coagulans 13002 and fructo-oligosaccharides improve the immunity of mice with immunosuppression induced by cyclophosphamide through modulating intestinal-derived and fecal microbiota[J].Food Research International(Otuuawa,Ont.), 2021, 140:109793.
[6] 迟韵阳. 蜂蜜成熟过程中糖的变化及油菜蜜腺分泌蔗糖的分子机制[D].南昌:南昌大学, 2020.
CHI Y Y.Changes of carbohydrates during the ripening of honey and molecular mechanism of sucrose secretion in Brassica napus nectary[D].Nanchang:Nanchang University, 2020.
[7] 于泽浩. 蜂蜜成熟过程中成分变化的研究[D].福州:福建农林大学, 2017.
YU Z H.Research on the changes of components in honey during ripening[D].Fuzhou:Fujian Agriculture and Forestry University, 2017.
[8] LI B W, SCHUHMANN P J.Gas chromatographic analysis of sugars in granola cereals[J].Journal of Food Science, 1981, 46(2):425-427.
[9] RUIZ-MATUTE A I, BROKL M, SORIA A C, et al.Gas chromatographic-mass spectrometric characterisation of tri- and tetrasaccharides in honey[J].Food Chemistry, 2010, 120(2):637-642.
[10] SWALLOW K W, LOW N H.Analysis and quantitation of the carbohydrates in honey using high-performance liquid chromatography[J].Journal of Agricultural & Food Chemistry, 1990, 38(9):1 828-1 832.
[11] 魏京华, 陈历俊, 赵军英, 等.液相色谱-质谱法快速检测4种乳源低聚糖[J].食品科学, 2016, 37(14):86-91.
WEI J H, CHEN L J, ZHAO J Y, et al.Rapid and simultaneous detection of 4 milk oligosaccharides using LC-MS[J].Food Science, 2016, 37(14):86-91.
[12] GENG L J, HUANG J R, FENG F, et al.Determination of fructooligosaccharides in milk powder using high performance anion-exchange chromatography coupled with pulsed amperometric detection[J].Chinese Journal of Chromatography, 2014, 32(12):1 380-1 384.
[13] SANZ M L, SANZ J, MARTíNEZ-CASTRO I.Gas chromatographic-mass spectrometric method for the qualitative and quantitative determination of disaccharides and trisaccharides in honey[J].Journal of Chromatography A, 2004, 1 059(1-2):143-148.
[14] 熊喜悦, 盛小奇, 王华, 等.代谢组学气相色谱-质谱分析方法中样品衍生化技术的新进展[J].化学通报, 2015, 78(7):602-607.
XIONG X Y, SHENG X Q, WANG H, et al.Development of chemical derivatization in metabolites analysis by GC-MS[J].Chemistry, 2015, 78(7):602-607.
[15] 陶乐平, 丁在富, 张部昌.气相色谱在多糖结构测定中的应用[J].色谱, 1994, 12(5):351-354.
TAO L P, DING Z F, ZHANG B C.Application of gas chromatography in the determination of polysaccharide structure[J].Chinese Journal of Chromatography, 1994, 12(5):351-354.
[16] VAN DE MERBEL N C.Quantitative determination of endogenous compounds in biological samples using chromatographic techniques[J].Trends in Analytical Chemistry, 2008, 27(10):924-933.
[17] European Commission. SANTE/11945—2011 method validation and quality control procedures for pesticide residues analysis in food and feed[S]. European Commission. 2011.
[18] THOMPSON M, ELLISON S L R, FAJGELJ A, et al.Harmonized guidelines for the use of recovery information in analytical measurement [J].Pure and Applied Chemistry, 1999, 71(2):337-348.
[19] OPASSIRI R, KETUDAT CAIRNS J R, AKIYAMA T, et al.Characterization of a rice β-glucosidase highly expressed in flower and germinating shoot[J].Plant Science, 2003, 165(3):627-638.
[20] BECKER A, SCHLÖDER P, STEELE J E, et al.The regulation of trehalose metabolism in insects[J].Experientia, 1996, 52(5):433-439.
[21] SILVA S P, MOREIRA A S P, DOMINGUES M D R M, et al.Contribution of non-enzymatic transglycosylation reactions to the honey oligosaccharides origin and diversity[J].Pure and Applied Chemistry, 2019, 91(7):1 231-1 242.
[22] PASCUAL-MATÉ A, OSÉS S M, MARCAZZAN G L, et al.Sugar composition and sugar-related parameters of honeys from the northern Iberian Plateau[J].Journal of Food Composition and Analysis, 2018, 74:34-43.
[23] DE LA FUENTE E, SANZ M L, MARTNEZ-CASTRO I, et al.Volatile and carbohydrate composition of rare unifloral honeys from Spain[J].Food Chemistry, 2007, 105(1):84-93.
[24] 雷琼. 福建省两种蜜源植物花蜜中矿质元素和糖类物质的研究[D].福州:福建农林大学, 2012.
LEI Q.Study on the mineral elements and carbohydrate in two kind of plant necter in Fujian[D].Fuzhou:Fujian Agriculture and Forestry University, 2012.
[25] 陈秋燕, 周京一, 张波, 等.白肉枇杷与红肉枇杷成熟果实可溶性糖组成差异及其与蔗糖代谢相关酶活性的关系[J].果树学报, 2010, 27(4):616-621.
CHEN Q Y, ZHOU J Y, ZHANG B, et al.Sugar composition difference between white- and red-fleshed loquat fruits and its relation with activities of sucrose-metabolizing enzymes[J].Journal of Fruit Science, 2010, 27(4):616-621.
[26] LAZAREVIĆ K B, JOVETIĆ M S, TEŠIĆ Ž L.Physicochemical parameters as a tool for the assessment of origin of honey[J].Journal of AOAC International, 2017, 100(4):840-851.
[27] COLLINS B S, KELLY C T, FOGARTY W M, et al.The high maltose-producing α-amylase of the thermophilic actinomycete, Thermomonospora curvata[J].Applied Microbiology & Biotechnology, 1993, 39(1):31-35.
[28] PAYNE D W, EVANS W A L.Transglycosylation in the desert locust, Schistocerca gregaria Forsk[J].Journal of Insect Physiology, 1964,10(5):675-688.
[29] TAKEUCHI K, SAKAI S, MIYAKE T. Crystalline erlose: United States, US19850786823[P]. 1988-07-19.
[30] MANOOCHEHRI H, HOSSEINI N F, SAIDIJAM M, et al.A review on invertase:Its potentials and applications[J].Biocatalysis and Agricultural Biotechnology, 2020, 25:101599.
文章导航

/