研究报告

产酶溶杆菌L-43合成抗菌肽的发酵工艺优化

  • 封成玲 ,
  • 刘洋 ,
  • 贾紫伟 ,
  • 刘丹丹 ,
  • 李清向 ,
  • 宁亚维 ,
  • 王志新
展开
  • (河北科技大学 食品与生物学院,河北 石家庄,050018)
第一作者:硕士研究生(王志新教授为通信作者,E-mail:zhxwang0311@163.com)

收稿日期: 2021-11-02

  修回日期: 2021-11-24

  网络出版日期: 2022-11-01

基金资助

河北省自然科学基金项目(C2020208014);河北省省级科技计划项目(20327124D)

Optimization of fermentation process for production of antimicrobial peptides with Lysobacter enzymogenes L-43

  • FENG Chengling ,
  • LIU Yang ,
  • JIA Ziwei ,
  • LIU Dandan ,
  • LI Qingxiang ,
  • NING Yawei ,
  • WANG Zhixin
Expand
  • (College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China)

Received date: 2021-11-02

  Revised date: 2021-11-24

  Online published: 2022-11-01

摘要

为提高产酶溶杆菌(Lysobacter enzymogenes)L-43发酵抗菌肽的产量,以抗菌肽效价为指标,采用单因素试验与正交试验对产酶溶杆菌L-43发酵合成抗菌肽的培养基与发酵条件进行优化,获得了发酵培养基配比为麦芽糖10.0 g/L,胰蛋白胨10.0 g/L,MgSO4 1.5 g/L,优化后效价达到3 770.52 AU/mL,与优化前相比,效价提高了6.26倍;在优化得到的发酵培养基基础上,探究发酵条件,培养基初始pH 7.0,装液量50 mL/250 mL,接种量2.0%(体积分数),发酵温度32 ℃,摇床转速180 r/min,发酵时间22 h,优化后效价达到9 422.33 AU/mL,比优化前提高了15.6倍。对产酶溶杆菌抗菌肽合成量进行多方面优化,进一步提高了抗菌肽发酵产量,同时降低了发酵成本,为后期产酶溶杆菌抑菌剂的规模化生产及应用提供了参考。

本文引用格式

封成玲 , 刘洋 , 贾紫伟 , 刘丹丹 , 李清向 , 宁亚维 , 王志新 . 产酶溶杆菌L-43合成抗菌肽的发酵工艺优化[J]. 食品与发酵工业, 2022 , 48(19) : 196 -203 . DOI: 10.13995/j.cnki.11-1802/ts.029924

Abstract

In order to increase the production of antimicrobial peptides by Lysobacter enzymogenes L-43, the fermentation medium and culture conditions were optimized. The optimal fermentation medium was maltose 10.0 g/L, tryptone 10.0 g/L and MgSO4 1.5 g/L. The titer of antimicrobial peptides cultured by the optimal medium was 3 770.52 AU/mL, and which was 6.26 times higher than of the initial medium. On the basis of the optimal fermentation medium, the optimal fermentation conditions were initial pH 7.0, 50 mL/250 mL of liquid loading, 2.0% of inoculum size, 32 ℃, 180 r/min and 22 h. The titer of antimicrobial peptides was 9 422.33 AU/mL, which was 15.6 times compared to the initial medium. The production of antimicrobial peptides significantly increased by the optimal medium and conditions and the cost of fermentation was reduced. This study could provide reference for the production and application of antimicrobial peptides produced by L. enzymogenes L-43.

参考文献

[1] HU R F, HUANG X S, HUANG J K, et al.Long- and short-term health effects of pesticide exposure:A cohort study from China[J].PLoS One, 2015, 10(6):e0128766.
[2] LI J Y, ZHAO Q Q, WURIYANGHAN H, et al.Biocontrol bacteria strains Y4 and Y8 alleviate tobacco bacterial wilt disease by altering their rhizosphere soil bacteria community[J].Rhizosphere, 2021, 19:100390.
[3] HUANG B, JIA H J, HAN X B, et al.Effects of biocontrol Bacillus and fermentation bacteria additions on the microbial community, functions and antibiotic resistance genes of prickly ash seed oil meal-biochar compost[J].Bioresource Technology, 2021, 340:125668.
[4] 朴京培, 代越强, 周晓梅.人参病害生物防治的研究进展[J].吉林师范大学学报(自然科学版), 2021, 42(4):103-107.
PIAO J P, DAI Y Q, ZHOU X M.Research progress on biological control of ginseng diseases[J].Journal of Jilin Normal University (Natural Science Edition), 2021, 42(4):103-107.
[5] DONG X F, FANG L, YE Z Y, et al.Screening of biocontrol bacteria against soft rot disease of Colocasia esculenta (L.) Schott and its field application[J].PLoS One, 2021, 16(7):e0254070.
[6] LI C P, SHI W C, WU D, et al.Biocontrol of potato common scab by Brevibacillus laterosporus BL12 is related to the reduction of pathogen and changes in soil bacterial community[J].Biological Control, 2021, 153:104496.
[7] EL-SABER BATIHA G, HUSSEIN D E, ALGAMMAL A M, et al.Application of natural antimicrobials in food preservation:Recent views[J].Food Control, 2021, 126:108066.
[8] 姬广海. 溶杆菌属及其在植物病害防治中的研究进展[J].云南农业大学学报(自然科学版), 2011, 26(1):124-130.
JI G H.Advances in the study on Lysobacter spp.bacteria and their effects on biological control of plant diseases[J].Journal of Yunnan Agricultural University (Natural Science), 2011, 26(1):124-130.
[9] 朱慧, 王云霞, 胡白石, 等.产酶溶杆菌OH11菌株α-水解蛋白酶基因的克隆与表达[J].中国生物防治, 2007, 23(4):358-362.
ZHU H, WANG Y X, HU B S, et al.Cloning and expression of α-lytic protease gene from Lysobacter enzymogenes strain OH11[J].Chinese Journal of Biological Control, 2007, 23(4):358-362.
[10] MAHESHWARI D K.Bacteria in Agrobiology:Plant Growth Responses[M].Berlin, Heidelberg:Springer Berlin Heidelberg, 2011.
[11] VON TIGERSTROM R G, STELMASCHUK S.Comparison of the phosphatases of Lysobacter enzymogenes with those of related bacteria[J].Journal of General Microbiology, 1987, 133(11):3 121-3 127.
[12] 钱栋宇. 产酶溶杆菌OH11菌株几丁质酶基因的功能研究[D].南京:南京农业大学, 2011.
QIAN D Y.Function of chitinase in Lysobacter enzymogenes OH11[D].Nanjing:Nanjing Agricultural University, 2011.
[13] PALUMBO J D, YUEN G Y, JOCHUM C C, et al.Mutagenesis of beta-1, 3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet[J].Phytopathology, 2005, 95(6):701-707.
[14] LOU L L, QIAN G L, XIE Y X, et al.Biosynthesis of HSAF, a tetramic acid-containing macrolactam from Lysobacter enzymogenes[J].Journal of the American Chemical Society, 2011, 133(4):643-645.
[15] 田囡, 王超, 刘新利.热稳定抗真菌因子HSAF及其生物防治研究进展[J].山东轻工业学院学报(自然科学版), 2013, 27(4):1-6;21.
TIAN N, WANG C, LIU X L.Research progress on heat-stable antifungal factor(HSAF) and its role in biological control[J].Journal of Shandong Polytechnic University (Natural Science Edition), 2013, 27(4):1-6;21.
[16] HARADA K I, SUZUKI M, KATO A, et al.Separation of WAP-8294A components, a novel anti-methicillin-resistant Staphylococcus aureus antibiotic, using high-speed counter-current chromatography[J].Journal of Chromatography A, 2001, 932(1-2):75-81.
[17] KATO A, NAKAYA S, KOKUBO N, et al.A new anti-MRSA antibiotic complex, WAP-8294A.I.Taxonomy, isolation and biological activities[J].The Journal of Antibiotics, 1998, 51(10):929-935.
[18] FOLMAN L B, POSTMA J, VAN VEEN J A.Characterisation of Lysobacter enzymogenes (Christensen and Cook 1978) strain 3.1T8, a powerful antagonist of fungal diseases of cucumber[J].Microbiological Research, 2003, 158(2):107-115.
[19] 王云霞, 钱国良, 胡白石, 等.产酶溶杆菌OH11菌株摇瓶发酵条件研究[J].中国生物防治, 2008, 24(3):267-271.
WANG Y X, QIAN G L, HU B S, et al.Optimization of the conditions for fermentation of Lysobacter enzymogenes srain OH11[J].Chinese Journal of Biological Control, 2008, 24(3):267-271.
[20] 田囡. 产酶溶杆菌C3产生热稳定性抗真菌因子(HSAF)的研究[D].济南:山东轻工业学院, 2011.
TIAN N.Research progress on heat-stable antifungal factor (HSAF) by Lysobacter enzymogenes C3[D].Jinan:Shandong Polytechnic University, 2011.
[21] 李宁, 李晓清, 贾英民.利用响应面法优化溶杆菌UCo1产溶菌酶的发酵培养基[J].中国酿造, 2012, 31(3):116-119.
LI N, LI X Q, JIA Y M.Optimization of fermentation medium producing lysozyme by Lysobacter UCo1 using response surface methodology[J].China Brewing, 2012, 31(3):116-119.
[22] 应晨, 阮川芬, 汤逸飞, 等.内生产酶溶杆菌R-2-1发酵工艺优化[J].浙江农业学报, 2015, 27(2):220-228.
YING C, RUAN C F, TANG Y F, et al.Optimization of fermentation conditions of the endophytic strain Lysobacter enzymogenes R-2-1 for microbicide production[J].Acta Agriculturae Zhejiangensis, 2015, 27(2):220-228.
[23] TANG B, SUN C, ZHAO Y C, et al.Efficient production of heat-stable antifungal factor through integrating statistical optimization with a two-stage temperature control strategy in Lysobacter enzymogenes OH11[J].BMC Biotechnology, 2018, 18(1):69.
[24] 张凤娇. 侧孢短芽孢杆菌S62-9抗菌肽的发酵放大工艺研究[D].石家庄:河北科技大学, 2016.
ZHANG F J.Research on scale-up fermentation of antimicrobial peptides produced by B.laterosporus S62-9[D].Shijiazhuang:Hebei University of Science and Technology, 2016.
[25] TANG B, ZHAO Y C, SHI X M, et al.Enhanced heat stable antifungal factor production by Lysobacter enzymogenes OH11 with cheap feedstocks:Medium optimization and quantitative determination[J].Letters in Applied Microbiology, 2018, 66(5):439-446.
[26] CHEN X S, LI S R, YU L J, et al.Systematic optimization for production of the anti-MRSA antibiotics WAP-8294A in an engineered strain of Lysobacter enzymogenes[J].Microbial Biotechnology, 2019, 12(6):1 430-1 440.
[27] 王纯婷. 产酶溶杆菌抗菌活性物质产率促进及其应用[D].南京:南京农业大学, 2014.
WANG C T.The yield promotion and application of antifungal factor produced by Lysobacter enzymogenes[D].Nanjing:Nanjing Agricultural University, 2014.
[28] POSTMA J, STEVENS L H, WIEGERS G L, et al.Biological control of Pythium aphanidermatum in cucumber with a combined application of Lysobacter enzymogenes strain 3.1T8 and chitosan[J].Biological Control, 2009, 48(3):301-309.
[29] QIAN G L, HU B S, JIANG Y H, et al.Identification and characterization of Lysobacter enzymogenes as a biological control agent against some fungal pathogens[J].Agricultural Sciences in China, 2009, 8(1):68-75.
[30] ZHAO Y Y, JIANG T P, XU H Y, et al.Characterization of Lysobacter spp.strains and their potential use as biocontrol agents against pear anthracnose[J].Microbiological Research, 2021, 242:126624.
[31] YUEN G Y, BRODERICK K C, JOCHUM C C, et al.Control of cyst Nematodes by Lysobacter enzymogenes strain C3 and the role of the antibiotic HSAF in the biological control activity[J].Biological Control, 2018, 117:158-163.
文章导航

/