综述与专题评论

酶促小分子化合物β-糖基化研究进展

  • 周家伟 ,
  • 胡友明 ,
  • 陆跃乐 ,
  • 朱林江 ,
  • 陈小龙
展开
  • (浙江工业大学 生物工程学院,浙江 杭州,310014)
第一作者:博士,讲师(朱林江副教授为通信作者,E-mail:zhulinjiang@zjut.edu.cn)

收稿日期: 2022-01-12

  修回日期: 2022-02-23

  网络出版日期: 2022-11-01

基金资助

浙江省自然科学基金项目(LY19B060008,LQ22H280012);浙江省重点研发计划项目(2019C02088);国家自然科学基金项目(82104322)

Research progress on enzymatic β-glycosylation of small molecule compounds

  • ZHOU Jiawei ,
  • HU Youming ,
  • LU Yuele ,
  • ZHU Linjiang ,
  • CHEN Xiaolong
Expand
  • (College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China)

Received date: 2022-01-12

  Revised date: 2022-02-23

  Online published: 2022-11-01

摘要

糖基化是自然界增加小分子化合物功能多样性的有效方法,并能显著改善化合物的水溶性、稳定性等物理化学性质,其中β-糖苷类化合物广泛存在于自然界中,具有重要的生物活性。由于缺乏高效β-糖基化修饰的酶催化剂,许多β-异构体糖苷的生产主要采用天然产物的分离提取和化学合成等方法。文章主要总结了可实现小分子化合物β-糖基化的酶的特性、催化机制和底物特异性等,并概述了以廉价寡糖为供体的β-糖基化酶的定向进化,为小分子化合物的β-糖基化研究提供参考。

本文引用格式

周家伟 , 胡友明 , 陆跃乐 , 朱林江 , 陈小龙 . 酶促小分子化合物β-糖基化研究进展[J]. 食品与发酵工业, 2022 , 48(19) : 280 -286 . DOI: 10.13995/j.cnki.11-1802/ts.030788

Abstract

Glycosylation is an effective way to increase the functional diversity of small molecule compounds in nature, and can significantly improve the water solubility, stability and other physical and chemical properties of compounds. Among them, β-glycoside compounds are widely present in nature and have important biological activities. However, due to the low efficiency of β-anomer-selective glycosylation catalyzed by enzymes, the production of many β-isomer glycosides currently used to be dependent upon methods such as separation and extraction of natural products and chemical synthesis. This review focuses on the enzymatic synthesis of β-glycoside. The characteristics, catalytic mechanism and substrate specificity of enzymes, which can catalyze β-glycosylation of small molecule compounds, were summarized. Directed evolution of enzymes with cheap oligosaccharides as glycosyl donor for enhancing β-glycosylation function was also discussed. These knowledges would be helpful for researches about enzymatic β-glycosylation of small molecule compounds.

参考文献

[1] AHMED A, PETERS N R, FITZGERALD M K, et al.Colchicine glycorandomization influences cytotoxicity and mechanism of action[J].Journal of the American Chemical Society, 2006, 128(44):14 224-14 225.
[2] CHOI H Y, KIM B M, MORGAN A M A, et al.Improvement of the pharmacological activity of menthol via enzymatic β-anomer-selective glycosylation[J].AMB Express, 2017, 7(1):167.
[3] KRUSCHITZ A, NIDETZKY B.Downstream processing technologies in the biocatalytic production of oligosaccharides[J].Biotechnology Advances, 2020, 43:107568.
[4] GOEDL C, SAWANGWAN T, WILDBERGER P, et al.Sucrose phosphorylase:A powerful transglucosylation catalyst for synthesis of α-D-glucosides as industrial fine chemicals[J].Biocatalysis and Biotransformation, 2010, 28(1):10-21.
[5] KLEWICKI R, BELINA I, WOJCIECHOWSKA A, et al.Synthesis of galactosyl mannitol derivative using β-galactosidase from Kluyveromyces lactis[J].Polish Journal of Food and Nutrition Sciences, 2017, 67(1):33-39.
[6] DE BRUYN F, MAERTENS J, BEAUPREZ J, et al.Biotechnological advances in UDP-sugar based glycosylation of small molecules[J].Biotechnology Advances, 2015, 33(2):288-302.
[7] MUKHOPADHYAY B, KARTHA K P R, RUSSELL D A, et al.Streamlined synthesis of per-O-acetylated sugars, glycosyl iodides, or thioglycosides from unprotected reducing sugars[J].The Journal of Organic Chemistry, 2004, 69(22):7 758-7 760.
[8] ÜNLIGIL U M, RINI J M.Glycosyltransferase structure and mechanism[J].Current Opinion in Structural Biology, 2000, 10(5):510-517.
[9] AJISAKA K, NISHIDA H, FUJIMOTO H.The synthesis of oligosaccharides by the reversed hydrolysis reaction of β-glucosidase at high substrate concentration and at high temperature[J].Biotechnology Letters, 1987, 9(4):243-248.
[10] LOMBARD V, GOLACONDA RAMULU H, DRULA E, et al.The carbohydrate-active enzymes database (CAZy) in 2013[J].Nucleic Acids Research, 2013, 42(D1):D490-D495.
[11] PARK H Y, KIM H J, LEE J K, et al.Galactooligosaccharide production by a thermostable β-galactosidase from Sulfolobus solfataricus[J].World Journal of Microbiology and Biotechnology, 2008, 24(8):1 553-1 558.
[12] NAKANISHI K, MATSUNO R, TORII K, et al.Properties of immobilized β-D-galactosidase from Bacillus circulans[J].Enzyme and Microbial Technology, 1983, 5(2):115-120.
[13] VERA C, GUERRERO C, WILSON L, et al.Synthesis of propyl-β-D-galactoside with free and immobilized β-galactosidase from Aspergillus oryzae[J].Process Biochemistry, 2017, 53:162-171.
[14] QI T T, GU G F, XU L, et al.Efficient synthesis of tyrosol galactosides by the β-galactosidase from Enterobacter cloacae B5[J].Applied Microbiology and Biotechnology, 2017, 101(12):4 995-5 003.
[15] KOBAYASHI K, SHIMIZU H, TANAKA N, et al.Characterization and structural analyses of a novel glycosyltransferase acting on the β-1, 2-glucosidic linkages[J].The Journal of Biological Chemistry, 2022, 298(3):101606.
[16] URRUTIA P, RODRIGUEZ-COLINAS B, FERNANDEZ-ARROJO L, et al.Detailed analysis of galactooligosaccharides synthesis with β-galactosidase from Aspergillus oryzae[J].Journal of Agricultural and Food Chemistry, 2013, 61(5):1 081-1 087.
[17] OSMAN A, TZORTZIS G, RASTALL R A, et al.BbgIV is an important Bifidobacterium β-galactosidase for the synthesis of prebiotic galactooligosaccharides at high temperatures[J].Journal of Agricultural and Food Chemistry, 2012, 60(3):740-748.
[18] YIN H F, BULTEMA J B, DIJKHUIZEN L, et al.Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae[J].Food Chemistry, 2017, 225:230-238.
[19] WEI W, QI D P, ZHAO H Z, et al.Synthesis and characterisation of galactosyl glycerol by β-galactosidase catalysed reverse hydrolysis of galactose and glycerol[J].Food Chemistry, 2013, 141(3):3 085-3 092.
[20] DUARTE L S, DA NATIVIDADE SCHÖFFER J, LORENZONI A S G, et al.A new bioprocess for the production of prebiotic lactosucrose by an immobilized β-galactosidase[J].Process Biochemistry, 2017, 55:96-103.
[21] POTOCKÁ E, MASTIHUBOVÁ M, MASTIHUBA V.Enzymatic synthesis of tyrosol glycosides[J].Journal of Molecular Catalysis B:Enzymatic, 2015, 113:23-28.
[22] NIETO-DOMÍNGUEZ M, DE EUGENIO L I, PEÑALVER P, et al.Enzymatic synthesis of a novel neuroprotective hydroxytyrosyl glycoside[J].Journal of Agricultural and Food Chemistry, 2017, 65(48):10 526-10 533.
[23] ZHANG M, JIANG Z Q, LI L T, et al.Biochemical characterization of a recombinant thermostable β-mannosidase from Thermotoga maritima with transglycosidase activity[J].Journal of Molecular Catalysis B:Enzymatic, 2009, 60(3-4):119-124.
[24] PARK N Y, BAEK N I, CHA J, et al.Production of a new sucrose derivative by transglycosylation of recombinant Sulfolobus shibatae β-glycosidase[J].Carbohydrate Research, 2005, 340(6):1 089-1 096.
[25] PERCY A, ONO H, WATT D, et al.Synthesis of β-D-glucopyranosyl-(1 → 4)-D-arabinose, β-D-glucopyranosyl-(1 → 4)-L-fucose and β-D-glucopyranosyl-(1 → 4)-D-altrose catalysed by cellobiose phosphorylase from Cellvibrio gilvus[J].Carbohydrate Research, 1997, 305(3-4):543-548.
[26] FUKAMIZO T, HAYASHI K, TAMOI M, et al.Enzymatic hydrolysis of 1, 3-1, 4-β-glucosyl oligosaccharides by 1, 3-1, 4-β-glucanase from Synechocystis PCC6803:A comparison with assays using polymer and chromophoric oligosaccharide substrates[J].Archives of Biochemistry and Biophysics, 2008, 478(2):187-194.
[27] NAKAJIMA M, NISHIMOTO M, KITAOKA M.Characterization of β-1, 3-galactosyl-N-acetylhexosamine phosphorylase from Propionibacterium acnes[J].Applied Microbiology and Biotechnology, 2009, 83(1):109-115.
[28] NIHIRA T, SAITO Y, NISHIMOTO M, et al.Discovery of cellobionic acid phosphorylase in cellulolytic bacteria and fungi[J].FEBS Letters, 2013, 587(21):3 556-3 561.
[29] PALCIC M M.Glycosyltransferases as biocatalysts[J].Current Opinion in Chemical Biology, 2011, 15(2):226-233.
[30] MACDONALD S S, PATEL A, LARMOUR V L C, et al.Structural and mechanistic analysis of a β-glycoside phosphorylase identified by screening a metagenomic library[J].Journal of Biological Chemistry, 2018, 293(9):3 451-3 467.
[31] KINO K, SATAKE R, MORIMATSU T, et al.A new method of synthesis of alkyl β-glycosides using sucrose as sugar donor[J].Bioscience, Biotechnology, and Biochemistry, 2008, 72(9):2 415-2 417.
[32] NISHIMOTO M, KITAOKA M.Practical preparation of lacto-N-biose I, a candidate for the bifidus factor in human milk[J].Bioscience, Biotechnology, and Biochemistry, 2007, 71(8):2 101-2 104.
[33] PANDEY R P, MALLA S, SIMKHADA D, et al.Production of 3-O-xylosyl quercetin in Escherichia coli[J].Applied Microbiology and Biotechnology, 2013, 97(5):1 889-1 901.
[34] THUAN N H, PARK J W, SOHNG J K.Toward the production of flavone-7-O-β-D-glucopyranosides using Arabidopsis glycosyltransferase in Escherichia coli[J].Process Biochemistry, 2013, 48(11):1 744-1 748.
[35] HSU T M, WELNER D H, RUSS Z N, et al.Employing a biochemical protecting group for a sustainable indigo dyeing strategy[J].Nature Chemical Biology, 2018, 14(3):256-261.
[36] CHOI H Y, LIM H S, PARK K H, et al.Directed evolution of glycosyltransferase for enhanced efficiency of avermectin glucosylation[J].Applied Microbiology and Biotechnology, 2021, 105(11):4 599-4 607.
[37] KIM B G, SUNG S H, AHN J H.Biological synthesis of quercetin 3-O-N-acetylglucosamine conjugate using engineered Escherichia coli expressing UGT78D2[J].Applied Microbiology and Biotechnology, 2012, 93(6):2 447-2 453.
[38] KIM H J, KIM B G, AHN J H.Regioselective synthesis of flavonoid bisglycosides using Escherichia coli harboring two glycosyltransferases[J].Applied Microbiology and Biotechnology, 2013, 97(12):5 275-5 282.
[39] WERNER S R, MORGAN J A.Controlling selectivity and enhancing yield of flavonoid glycosides in recombinant yeast[J].Bioprocess and Biosystems Engineering, 2010, 33(7):863-871.
[40] ANTOINE T, BOSSO C, HEYRAUD A, et al.Large scale in vivo synthesis of globotriose and globotetraose by high cell density culture of metabolically engineered Escherichia coli[J].Biochimie, 2005, 87(2):197-203.
[41] HANCOCK S M, CORBETT K, FORDHAM-SKELTON A P, et al.Developing promiscuous glycosidases for glycoside synthesis:Residues W433 and E432 in Sulfolobus solfataricus β-glycosidase are important glucoside- and galactoside-specificity determinants[J].Chembiochem, 2005, 6(5):866-875.
[42] HORIKOSHI S, SABURI W, YU J, et al.Substrate specificity of glycoside hydrolase family 1 β-glucosidase AtBGlu42 from Arabidopsis thaliana and its molecular mechanism[J].Bioscience, Biotechnology, and Biochemistry, 2021, 86(2):231-245.
[43] LU L L, XU L J, GUO Y C, et al.Glycosylation of phenolic compounds by the site-mutated β-galactosidase from Lactobacillus bulgaricus L3[J].PLoS One, 2015, 10(3):e0121445.
[44] FENG H Y, DRONE J, HOFFMANN L, et al.Converting a β-glycosidase into a β-transglycosidase by directed evolution[J].The Journal of Biological Chemistry, 2005, 280(44):37 088-37 097.
[45] TEZE D, HENDRICKX J, CZJZEK M, et al.Semi-rational approach for converting a GH1 β-glycosidase into a β-transglycosidase[J].Protein Engineering, Design and Selection, 2013, 27(1):13-19.
[46] XUE Y M, XUE M K, XIE F, et al.Engineering Thermotoga maritima β-glucosidase for improved alkyl glycosides synthesis by site-directed mutagenesis[J].Journal of Industrial Microbiology & Biotechnology, 2021, 48(5-6):kuab031.
[47] LUNDEMO P, KARLSSON E N, ADLERCREUTZ P.Eliminating hydrolytic activity without affecting the transglycosylation of a GH1 β-glucosidase[J].Applied Microbiology and Biotechnology, 2017, 101(3):1 121-1 131.
[48] YIN H F, PIJNING T, MENG X F, et al.Biochemical characterization of the functional roles of residues in the active site of the β-galactosidase from Bacillus circulans ATCC 31382[J].Biochemistry, 2017, 56(24):3 109-3 118.
[49] DRONE J, FENG H Y, TELLIER C, et al.Thermus thermophilus glycosynthases for the efficient synthesis of galactosyl and glucosyl β-(1→3)-glycosides[J].European Journal of Organic Chemistry, 2005, 2005(10):1 977-1 983.
[50] PENGTHAISONG S, HUA Y L, KETUDAT CAIRNS J R.Structural basis for transglycosylation in glycoside hydrolase family GH116 glycosynthases[J].Archives of Biochemistry and Biophysics, 2021, 706:108924.
文章导航

/