[1] AHMED A, PETERS N R, FITZGERALD M K, et al.Colchicine glycorandomization influences cytotoxicity and mechanism of action[J].Journal of the American Chemical Society, 2006, 128(44):14 224-14 225.
[2] CHOI H Y, KIM B M, MORGAN A M A, et al.Improvement of the pharmacological activity of menthol via enzymatic β-anomer-selective glycosylation[J].AMB Express, 2017, 7(1):167.
[3] KRUSCHITZ A, NIDETZKY B.Downstream processing technologies in the biocatalytic production of oligosaccharides[J].Biotechnology Advances, 2020, 43:107568.
[4] GOEDL C, SAWANGWAN T, WILDBERGER P, et al.Sucrose phosphorylase:A powerful transglucosylation catalyst for synthesis of α-D-glucosides as industrial fine chemicals[J].Biocatalysis and Biotransformation, 2010, 28(1):10-21.
[5] KLEWICKI R, BELINA I, WOJCIECHOWSKA A, et al.Synthesis of galactosyl mannitol derivative using β-galactosidase from Kluyveromyces lactis[J].Polish Journal of Food and Nutrition Sciences, 2017, 67(1):33-39.
[6] DE BRUYN F, MAERTENS J, BEAUPREZ J, et al.Biotechnological advances in UDP-sugar based glycosylation of small molecules[J].Biotechnology Advances, 2015, 33(2):288-302.
[7] MUKHOPADHYAY B, KARTHA K P R, RUSSELL D A, et al.Streamlined synthesis of per-O-acetylated sugars, glycosyl iodides, or thioglycosides from unprotected reducing sugars[J].The Journal of Organic Chemistry, 2004, 69(22):7 758-7 760.
[8] ÜNLIGIL U M, RINI J M.Glycosyltransferase structure and mechanism[J].Current Opinion in Structural Biology, 2000, 10(5):510-517.
[9] AJISAKA K, NISHIDA H, FUJIMOTO H.The synthesis of oligosaccharides by the reversed hydrolysis reaction of β-glucosidase at high substrate concentration and at high temperature[J].Biotechnology Letters, 1987, 9(4):243-248.
[10] LOMBARD V, GOLACONDA RAMULU H, DRULA E, et al.The carbohydrate-active enzymes database (CAZy) in 2013[J].Nucleic Acids Research, 2013, 42(D1):D490-D495.
[11] PARK H Y, KIM H J, LEE J K, et al.Galactooligosaccharide production by a thermostable β-galactosidase from Sulfolobus solfataricus[J].World Journal of Microbiology and Biotechnology, 2008, 24(8):1 553-1 558.
[12] NAKANISHI K, MATSUNO R, TORII K, et al.Properties of immobilized β-D-galactosidase from Bacillus circulans[J].Enzyme and Microbial Technology, 1983, 5(2):115-120.
[13] VERA C, GUERRERO C, WILSON L, et al.Synthesis of propyl-β-D-galactoside with free and immobilized β-galactosidase from Aspergillus oryzae[J].Process Biochemistry, 2017, 53:162-171.
[14] QI T T, GU G F, XU L, et al.Efficient synthesis of tyrosol galactosides by the β-galactosidase from Enterobacter cloacae B5[J].Applied Microbiology and Biotechnology, 2017, 101(12):4 995-5 003.
[15] KOBAYASHI K, SHIMIZU H, TANAKA N, et al.Characterization and structural analyses of a novel glycosyltransferase acting on the β-1, 2-glucosidic linkages[J].The Journal of Biological Chemistry, 2022, 298(3):101606.
[16] URRUTIA P, RODRIGUEZ-COLINAS B, FERNANDEZ-ARROJO L, et al.Detailed analysis of galactooligosaccharides synthesis with β-galactosidase from Aspergillus oryzae[J].Journal of Agricultural and Food Chemistry, 2013, 61(5):1 081-1 087.
[17] OSMAN A, TZORTZIS G, RASTALL R A, et al.BbgIV is an important Bifidobacterium β-galactosidase for the synthesis of prebiotic galactooligosaccharides at high temperatures[J].Journal of Agricultural and Food Chemistry, 2012, 60(3):740-748.
[18] YIN H F, BULTEMA J B, DIJKHUIZEN L, et al.Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae[J].Food Chemistry, 2017, 225:230-238.
[19] WEI W, QI D P, ZHAO H Z, et al.Synthesis and characterisation of galactosyl glycerol by β-galactosidase catalysed reverse hydrolysis of galactose and glycerol[J].Food Chemistry, 2013, 141(3):3 085-3 092.
[20] DUARTE L S, DA NATIVIDADE SCHÖFFER J, LORENZONI A S G, et al.A new bioprocess for the production of prebiotic lactosucrose by an immobilized β-galactosidase[J].Process Biochemistry, 2017, 55:96-103.
[21] POTOCKÁ E, MASTIHUBOVÁ M, MASTIHUBA V.Enzymatic synthesis of tyrosol glycosides[J].Journal of Molecular Catalysis B:Enzymatic, 2015, 113:23-28.
[22] NIETO-DOMÍNGUEZ M, DE EUGENIO L I, PEÑALVER P, et al.Enzymatic synthesis of a novel neuroprotective hydroxytyrosyl glycoside[J].Journal of Agricultural and Food Chemistry, 2017, 65(48):10 526-10 533.
[23] ZHANG M, JIANG Z Q, LI L T, et al.Biochemical characterization of a recombinant thermostable β-mannosidase from Thermotoga maritima with transglycosidase activity[J].Journal of Molecular Catalysis B:Enzymatic, 2009, 60(3-4):119-124.
[24] PARK N Y, BAEK N I, CHA J, et al.Production of a new sucrose derivative by transglycosylation of recombinant Sulfolobus shibatae β-glycosidase[J].Carbohydrate Research, 2005, 340(6):1 089-1 096.
[25] PERCY A, ONO H, WATT D, et al.Synthesis of β-D-glucopyranosyl-(1 → 4)-D-arabinose, β-D-glucopyranosyl-(1 → 4)-L-fucose and β-D-glucopyranosyl-(1 → 4)-D-altrose catalysed by cellobiose phosphorylase from Cellvibrio gilvus[J].Carbohydrate Research, 1997, 305(3-4):543-548.
[26] FUKAMIZO T, HAYASHI K, TAMOI M, et al.Enzymatic hydrolysis of 1, 3-1, 4-β-glucosyl oligosaccharides by 1, 3-1, 4-β-glucanase from Synechocystis PCC6803:A comparison with assays using polymer and chromophoric oligosaccharide substrates[J].Archives of Biochemistry and Biophysics, 2008, 478(2):187-194.
[27] NAKAJIMA M, NISHIMOTO M, KITAOKA M.Characterization of β-1, 3-galactosyl-N-acetylhexosamine phosphorylase from Propionibacterium acnes[J].Applied Microbiology and Biotechnology, 2009, 83(1):109-115.
[28] NIHIRA T, SAITO Y, NISHIMOTO M, et al.Discovery of cellobionic acid phosphorylase in cellulolytic bacteria and fungi[J].FEBS Letters, 2013, 587(21):3 556-3 561.
[29] PALCIC M M.Glycosyltransferases as biocatalysts[J].Current Opinion in Chemical Biology, 2011, 15(2):226-233.
[30] MACDONALD S S, PATEL A, LARMOUR V L C, et al.Structural and mechanistic analysis of a β-glycoside phosphorylase identified by screening a metagenomic library[J].Journal of Biological Chemistry, 2018, 293(9):3 451-3 467.
[31] KINO K, SATAKE R, MORIMATSU T, et al.A new method of synthesis of alkyl β-glycosides using sucrose as sugar donor[J].Bioscience, Biotechnology, and Biochemistry, 2008, 72(9):2 415-2 417.
[32] NISHIMOTO M, KITAOKA M.Practical preparation of lacto-N-biose I, a candidate for the bifidus factor in human milk[J].Bioscience, Biotechnology, and Biochemistry, 2007, 71(8):2 101-2 104.
[33] PANDEY R P, MALLA S, SIMKHADA D, et al.Production of 3-O-xylosyl quercetin in Escherichia coli[J].Applied Microbiology and Biotechnology, 2013, 97(5):1 889-1 901.
[34] THUAN N H, PARK J W, SOHNG J K.Toward the production of flavone-7-O-β-D-glucopyranosides using Arabidopsis glycosyltransferase in Escherichia coli[J].Process Biochemistry, 2013, 48(11):1 744-1 748.
[35] HSU T M, WELNER D H, RUSS Z N, et al.Employing a biochemical protecting group for a sustainable indigo dyeing strategy[J].Nature Chemical Biology, 2018, 14(3):256-261.
[36] CHOI H Y, LIM H S, PARK K H, et al.Directed evolution of glycosyltransferase for enhanced efficiency of avermectin glucosylation[J].Applied Microbiology and Biotechnology, 2021, 105(11):4 599-4 607.
[37] KIM B G, SUNG S H, AHN J H.Biological synthesis of quercetin 3-O-N-acetylglucosamine conjugate using engineered Escherichia coli expressing UGT78D2[J].Applied Microbiology and Biotechnology, 2012, 93(6):2 447-2 453.
[38] KIM H J, KIM B G, AHN J H.Regioselective synthesis of flavonoid bisglycosides using Escherichia coli harboring two glycosyltransferases[J].Applied Microbiology and Biotechnology, 2013, 97(12):5 275-5 282.
[39] WERNER S R, MORGAN J A.Controlling selectivity and enhancing yield of flavonoid glycosides in recombinant yeast[J].Bioprocess and Biosystems Engineering, 2010, 33(7):863-871.
[40] ANTOINE T, BOSSO C, HEYRAUD A, et al.Large scale in vivo synthesis of globotriose and globotetraose by high cell density culture of metabolically engineered Escherichia coli[J].Biochimie, 2005, 87(2):197-203.
[41] HANCOCK S M, CORBETT K, FORDHAM-SKELTON A P, et al.Developing promiscuous glycosidases for glycoside synthesis:Residues W433 and E432 in Sulfolobus solfataricus β-glycosidase are important glucoside- and galactoside-specificity determinants[J].Chembiochem, 2005, 6(5):866-875.
[42] HORIKOSHI S, SABURI W, YU J, et al.Substrate specificity of glycoside hydrolase family 1 β-glucosidase AtBGlu42 from Arabidopsis thaliana and its molecular mechanism[J].Bioscience, Biotechnology, and Biochemistry, 2021, 86(2):231-245.
[43] LU L L, XU L J, GUO Y C, et al.Glycosylation of phenolic compounds by the site-mutated β-galactosidase from Lactobacillus bulgaricus L3[J].PLoS One, 2015, 10(3):e0121445.
[44] FENG H Y, DRONE J, HOFFMANN L, et al.Converting a β-glycosidase into a β-transglycosidase by directed evolution[J].The Journal of Biological Chemistry, 2005, 280(44):37 088-37 097.
[45] TEZE D, HENDRICKX J, CZJZEK M, et al.Semi-rational approach for converting a GH1 β-glycosidase into a β-transglycosidase[J].Protein Engineering, Design and Selection, 2013, 27(1):13-19.
[46] XUE Y M, XUE M K, XIE F, et al.Engineering Thermotoga maritima β-glucosidase for improved alkyl glycosides synthesis by site-directed mutagenesis[J].Journal of Industrial Microbiology & Biotechnology, 2021, 48(5-6):kuab031.
[47] LUNDEMO P, KARLSSON E N, ADLERCREUTZ P.Eliminating hydrolytic activity without affecting the transglycosylation of a GH1 β-glucosidase[J].Applied Microbiology and Biotechnology, 2017, 101(3):1 121-1 131.
[48] YIN H F, PIJNING T, MENG X F, et al.Biochemical characterization of the functional roles of residues in the active site of the β-galactosidase from Bacillus circulans ATCC 31382[J].Biochemistry, 2017, 56(24):3 109-3 118.
[49] DRONE J, FENG H Y, TELLIER C, et al.Thermus thermophilus glycosynthases for the efficient synthesis of galactosyl and glucosyl β-(1→3)-glycosides[J].European Journal of Organic Chemistry, 2005, 2005(10):1 977-1 983.
[50] PENGTHAISONG S, HUA Y L, KETUDAT CAIRNS J R.Structural basis for transglycosylation in glycoside hydrolase family GH116 glycosynthases[J].Archives of Biochemistry and Biophysics, 2021, 706:108924.