研究报告

大豆蛋白纤维聚集体Pickering乳液提高β-胡萝卜素的包埋稳定性

  • 吴子涵 ,
  • 陈泽平 ,
  • 刘震宇 ,
  • 季扶云 ,
  • 万世园 ,
  • 郑志
展开
  • (合肥工业大学 食品与生物工程学院,安徽 合肥,230009)
本科生(郑志教授为通信作者,E-mail:zhengzhi@hfut.edu.cn)

收稿日期: 2021-09-10

  修回日期: 2021-10-18

  网络出版日期: 2022-12-02

基金资助

国家重点研发计划项目(2018YFD0400601);安徽省科技攻关重大项目(202103b06020009)

Soy protein fibril Pickering emulsions improve stability of β-carotene

  • WU Zihan ,
  • CHEN Zeping ,
  • LIU Zhenyu ,
  • JI Fuyun ,
  • WAN Shiyuan ,
  • ZHENG Zhi
Expand
  • (Hefei University of Technology, School of Food and Biological Engineering, Hefei 230009, China)

Received date: 2021-09-10

  Revised date: 2021-10-18

  Online published: 2022-12-02

摘要

利用大豆蛋白纤维聚集体(soy protein isolate fibril, SPIF)制备Pickering乳液,并研究其对β-胡萝卜素的包埋稳定性。结果表明,大豆分离蛋白(soy protein isolated, SPI)经酸热处理可以生成含大量β-折叠结构的SPIF,其乳化活性可达到14.38 m2/g,乳化稳定性可达到88.72%,均显著高于SPI。利用SPIF剪切乳化制备Pickering乳液,发现NaCl浓度未超过600 mmol/L时,随着其浓度的增加,SPIF乳液界面蛋白吸附率增加,从而使Pickering乳液稳定性提高。同时,SPIF乳液对β-胡萝卜素的包埋率可达到98.79%。当NaCl浓度为600 mmol/L时,SPIF形成的Pickering乳液中β-胡萝卜素在贮藏第7天的保留率达到最大值81.46%,相比SPI乳液提高了13.24%。

本文引用格式

吴子涵 , 陈泽平 , 刘震宇 , 季扶云 , 万世园 , 郑志 . 大豆蛋白纤维聚集体Pickering乳液提高β-胡萝卜素的包埋稳定性[J]. 食品与发酵工业, 2022 , 48(21) : 152 -159 . DOI: 10.13995/j.cnki.11-1802/ts.029352

Abstract

Soy protein isolate fibril (SPIF) was used to prepare a Pickering emulsion, and the embedding stability of β-carotene was studied in this research. SPIF prepared by soy protein isolated (SPI) with acid heat treatment had a large number of β-sheet structures. As a result, the emulsion stabilized by SPIF emulsification activity and emulsification stability index were significantly higher than that of SPI, which were 14.38 m2/g and 88.72%, respectively. When NaCl concentration was less than 600mmol/L, the interfacial protein content of the emulsion stabilized by SPIF and it increased with the increase of NaCl concentration, which improved the stability of the Pickering emulsion. Meanwhile, the encapsulation efficiency of β-carotene in SPIF emulsion reached 98.79%. When NaCl concentration was 600 mmol/L, the maximum retention rate of β-carotene in Pickering emulsion formed by SPIF was 81.46% after seven days of storage, which was 13.24% higher than that of SPI emulsion.

参考文献

[1] TING Y W, JIANG Y K, HO C T, et al.Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals[J].Journal of Functional Foods, 2014, 7:112-128.
[2] 李海明, 杨盛, 韦何雯, 等.食品级Pickering乳液的研究进展[J].食品科学, 2015, 36(19):265-270.
LI H M, YANG S, WEI H W, et al.Food grade Pickering emulsion:A review[J].Food Science, 2015, 36(19):265-270.
[3] XIAO J, LI Y Q, HUANG Q R.Recent advances on food-grade particles stabilized Pickering emulsions:Fabrication, characterization and research trends[J].Trends in Food Science & Technology, 2016, 55:48-60.
[4] DELAHAIJE R J, WIERENGA P A, VAN NIEUWENHUIJZEN N H, et al.Protein concentration and protein-exposed hydrophobicity as dominant parameters determining the flocculation of protein-stabilized oil-in-water emulsions[J].Langmuir: the ACS Journal of Surfaces and Colloids, 2013, 29(37):11 567-11 574.
[5] MOHAMMADIAN M, MADADLOU A.Technological functionality and biological properties of food protein nanofibrils formed by heating at acidic condition[J].Trends in Food Science & Technology, 2018, 75:115-128.
[6] JUNG J M, GUNES D Z, MEZZENGA R.Interfacial activity and interfacial shear rheology of native β-lactoglobulin monomers and their heat-induced fibers[J].Langmuir, 2010, 26(19):15 366-15 375.
[7] LI S, JIANG Z Y, WANG F X, et al.Characterization of rice glutelin fibrils and their effect on in vitro rice starch digestibility[J].Food Hydrocolloids, 2020, 106:105918.
[8] ALBANES D.β-Carotene and lung cancer:A case study[J].The American Journal of Clinical Nutrition, 1999, 69(6):1345S-1350S.
[9] BAI C Q, ZHENG J X, ZHAO L, et al.Development of oral delivery systems with enhanced antioxidant and anticancer activity:Coix seed oil and β-carotene coloaded liposomes[J].Journal of Agricultural and Food Chemistry, 2019, 67(1):406-414.
[10] 王金梅, 陈燕琼, 王梦萍, 等.大豆蛋白自组装纤维聚集体的界面及乳化性质研究[J].中国粮油学报, 2016, 31(12):33-38.
WANG J M, CHEN Y Q, WANG M P, et al.Interfacial and emulsifying properties of self-assembly fibrillar aggregates from soy protein[J].Journal of the Chinese Cereals and Oils Association, 2016, 31(12):33-38.
[11] LARA C, ADAMCIK J, JORDENS S, et al.General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons[J].Biomacromolecules, 2011, 12(5):1 868-1 875.
[12] 谢桂杰, 梁蓉, 杨成.运载β-胡萝卜素的Pickering乳液的制备及表征[J].精细化工, 2018, 35(9):1 582-1 588.
XIE G J, LIANG R, YANG C.Preparation and characterization of Pickering emulsions loaded with β-carotene[J].Fine Chemicals, 2018, 35(9):1 582-1 588.
[13] BODE D C, STANYON H F, HIRANI T, et al.Serum albumin’s protective inhibition of amyloid-β fiber formation is suppressed by cholesterol, fatty acids and warfarin[J].Journal of Molecular Biology, 2018, 430(7):919-934.
[14] 陈震东, 陈嘉琦, 王金梅, 等.热诱导大豆蛋白纤维聚集体的分离及性质研究[J].现代食品科技, 2015, 31(6):172-177.
CHEN Z D, CHEN J Q, WANG J M, et al.Properties of isolated, thermally induced soy protein fibrillar aggregates[J].Modern Food Science and Technology, 2015, 31(6):172-177.
[15] 刘昊天, 李媛媛, 汪海棠,等.不同水解度猪骨蛋白水解物对水包油型乳状液乳化特性的影响[J].食品科学, 2018, 39(16):53-60.
LIU H T, LI Y Y, WANG H T, et al.Effects of porcine bone protein hydrolysates with different degrees of hydrolysis on properties of oil-in-water emulsions[J].Food Science, 2018, 39(16):53-60.
[16] 江连洲, 朱颖, 王中江.大豆蛋白结构柔性与界面功能的构效关系[J].中国食品学报, 2020, 20(1):284-289.
JIANG L Z, ZHU Y, WANG Z J.Structure-activity relationship between the flexibility structure of soybean protein and interface function[J].Journal of Chinese Institute of Food Science and Technology, 2020, 20(1):284-289.
[17] SURH J, DECKER E A, MCCLEMENTS D J.Properties and stability of oil-in-water emulsions stabilized by fish gelatin[J].Food Hydrocolloids, 2006, 20(5):596-606.
[18] 曹亚倩, 肖军霞, 蒋林宏, 等.玉米纤维素在Pickering乳液制备中的应用研究[J].中国粮油学报, 2020, 35(4):54-60.
CAO Y Q, XIAO J X, JIANG L H, et al.Application of corn fiber in the preparation of Pickering emulsions[J].Journal of the Chinese Cereals and Oils Association, 2020, 35(4):54-60.
[19] 刘欣, 罗志刚, 李小林.海藻酸钠-壳聚糖表面修饰维生素C/β-胡萝卜素复合脂质体的制备[J].现代食品科技, 2020, 36(11):163-169.
LIU X, LUO Z G, LI X L.Preparation of vitamin C/β-carotene composite liposomes with their surfaces modified by sodium alginate-chitosan[J].Modern Food Science and Technology, 2020, 36(11):163-169.
[20] AVEYARD R, BINKS B P, CLINT J H.Emulsions stabilised solely by colloidal particles[J].Advances in Colloid and Interface Science, 2003, 100-102:503-546.
[21] WANG K Q, LUO S Z, ZHONG X Y, et al.Changes in chemical interactions and protein conformation during heat-induced wheat gluten gel formation[J].Food Chemistry, 2017, 214:393-399.
[22] FENG Z B, LI L L, ZHANG Y, et al.Formation of whey protein isolate nanofibrils by endoproteinase GluC and their emulsifying properties[J].Food Hydrocolloids, 2019, 94:71-79.
[23] WEI Z H, CHENG J W, HUANG Q R.Food-grade Pickering emulsions stabilized by ovotransferrin fibrils[J].Food Hydrocolloids, 2019, 94(6):592-602.
[24] 刘蕾, 袁芳, 高彦祥.α-乳白蛋白提高β-胡萝卜素乳液稳定性[J].农业工程学报, 2016, 32(S2):423-429.
LIU L, YUAN F, GAO Y X.α-lactalbumin enhancing emulsion stability of β-carotene[J].Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2):423-429.
[25] TANG C H, SHEN L.Role of conformational flexibility in the emulsifying properties of bovine serum albumin[J].Journal of Agricultural and Food Chemistry, 2013, 61(12):3 097-3 110.
文章导航

/