为实现对多样本新鲜羊肉营养含量的快速检测,该研究利用近红外光谱(near-infrared reflectance spectroscopy,NIRS)技术构建了新鲜羊肉中6种营养成分的定量分析模型。于武威市民勤县采集203份新鲜羊肉,并测定其水分(moisture,MT)、粗脂肪(ether extract,EE)、粗蛋白(crude protein,CP)、葡萄糖(glucose,Glu)、粗灰分(crude ash,Ash)及总磷(phosphorus,P)的含量。使用WINISI III与Foss Calibrator定标软件分别建立羊肉6种营养成分的NIRS模型并对其结果进行比较。WINISI III软件定标结果显示,羊肉MT、EE、CP预测模型的预测决定系数(coefficient of determination for validation,RSQ)和外部验证相对分析误差(ratio of performance to deviation for vali- dation,RPD)分别为0.83与2.47、0.90与3.60、0.81与2.79;Glu、Ash预测模型的RSQ和RPD分别为0.54与3.05、0.54与1.91;P预测模型的RSQ和RPD为0.45与1.80 。Foss Calibrator软件定标结果显示,MT、EE、CP的交互验证均方根误差[root mean square error of cross-verification,RMSEP(cross)]和决定系数(coefficient of determination,R2)分别为0.631与0.84、0.326与0.87、0.468与0.83 ;Glu、Ash的RMSEP(cross)和R2分别为0.127 与0.53、0.179与0.51;P的RMSEP(cross)和R2为0.086与0.33。2种定标软件得到的结论基本一致,均表明MT、EE、CP的预测模型可在实际生产中精确预测;Glu、Ash的预测模型可在大量样品的粗略分析与筛选时应用,但还需继续优化;P的预测模型相关性较差,不能在实际生产中应用。
In order to rapidly determine the nutrient content of a large number of fresh lamb samples, this study used near-infrared reflectance spectroscopy (NIRS) to construct a quantitative analysis model of six nutrients in fresh lamb, Totally 203 fresh mutton samples were collected in Minqin county, Wuwei city, and moisture content (moisture, MT), crude fat (ether extract, EE), crude protein (crude protein, CP), glucose (glucose, Glu), crude ash (crude ash, Ash) and total phosphorus (total phosphorus, P) content of samples were measured, WINISI III and Foss Calibrator calibration software were used to establish NIRS models of 6 kinds of mutton nutrients and the results were compared, WINISI III software calibration results showed that the coefficient of determination for validation (RSQ) and the ratio of performance to deviation for validation (RPD) of the MT, EE, and CP prediction models were 0.83 and 2.47, 0.90 and 3.60, 0.81 and 2.79 respectively;the RSQ and RPD of the Glu and Ash prediction models were 0.54 and 3.05, 0.54 and 1.91, respectively;the RSQ and RPD of the P predictive model were 0.45 and1.80, respectively, The calibration results of Foss Calibrator software showed that the root means a square error of cross-verification [RMSEP(cross)] and coefficient of determination (R2)of MT, EE, and CP were 0.631 and 0.84, 0.326 and 0.87, 0.468 and 0.83, respectively;RMSEP (cross) and R2 of Glu and Ash were 0.127 and 0.53, 0.179 and 0.51, respectively; RMSEP (cross) and R2 of P were 0.086 and 0.33, respectively, The conclusions obtained by the two-calibration software were similar, indicating that the prediction models of MT, EE, and CP can be accurately predicted in actual production, The prediction models of Glu and Ash can be used to roughly analyze and screen a large number of samples, and need to be further optimized. The prediction model of P had a poor correlation and cannot be applied in actual production.
[1] 彭彦昆, 张雷蕾.光谱技术在生鲜肉品质安全快速检测的研究进展[J].食品安全质量检测学报, 2010, 27(2):62-72.
PENG Y K, ZHANG L L.Advancement of rapid detection of meat quality and safety by using spectral imaging technology[J].Food Safety and Quality Detection Technology, 2010, 27(2):62-72.
[2] 车天宇.基于近红外光谱的内蒙古地区羊肉营养成分快速检测与分级的研究[D].呼和浩特:内蒙古农业大学, 2020.
CHE T Y.Study on rapid measurement and classification of lamb nutrition in Inner Mongolia region based on NIRS[D].Hohhot:Inner Mongolia Agricultural University, 2020.
[3] 开晗, 孔保华.近红外光谱检测技术在肉类工业中的应用[J].肉类研究, 2011(9):35-39.
KAI H, KONG B H.Application of near infrared reflectance spec- troscopy in meat industry[J].Meat Research, 2011(9):35-39.
[4] 李稳稳.基于深度学习的近红外光谱分析[D].杭州:中国计量大学, 2018.
LI W W.Near-infrared spectral analysis based on deep learning[D].Hangzhou:China Jiliang University, 2018.
[5] 褚小立, 陈瀑, 李敬岩, 等.近红外光谱分析技术的最新进展与展望[J].分析测试学报, 2020, 39(10):1 181-1 188.
CHU X L, CHEN P, LI J Y.Progresses and perspectives of near infrared spectroscopy analytical technology[J].Journal of Instrumental Analysis, 2020, 39(10):1 181-1 188.
[6] 陈迎丽, 何钰, 龚会琴, 等.基于欧式距离法或因子化法的近红外光谱技术对牛肉掺假鉴定的研究[J].食品研究与开发, 2019, 40(15):141-146.
CHEN Y L, HE Y, GONG H Q, et al.Study on identification of beef adulteration by near infrared spectroscopy based on euclidean distance method or factorization method[J].Food Research and Development, 2019, 40(15):141-146.
[7] 梁梦醒.肉品品质快速检测的方法研究[D].镇江:江苏科技大学, 2018.
LIANG M X.Study on the method of rapid detection of meat quality [D].Zhenjiang:Jiangsu University of Science and Technology, 2018.
[8] 陈丽.羊胴体分级模型与分级评定技术研究[D].北京:中国农业科学院, 2011.
CHEN L.The study on the classification model and evaluation technology of mutton carcass[D].Beijing:China Academy of Agricultural Sciences, 2011.
[9] 苏华维.近红外光谱分析技术在牛肉品质检测中的应用研究[D].北京:中国农业科学院, 2014.
SU H W.Study on the application of near infrared reflectance spectroscopy technique on beef quality detection[D].Beijing:China Academy of Agricultural Sciences, 2014.
[10] 王培培.基于近红外光谱的不同品种绵羊肉鉴别及品质检测技术研究[D].北京:中国农业科学院, 2012.
WANG P P.Study on the breed discrimination and quality determination of lamb by near infrared spectroscopy[D].Beijing:China Academy of Agricultural Sciences, 2012.
[11] 王靖, 丁佳兴, 郭中华, 等.基于近红外高光谱成像技术的宁夏羊肉产地鉴别[J].食品工业科技, 2018, 39(2):250-254;260.
WANG J, DING J X, GUO Z H, et al.Identification of geographical origins of mutton in Ningxia based on the near infrared hyperspectral imaging technique[J].Science and Technology of Food Industry, 2018, 39(2):250-254;260.
[12] 褚小立.化学计量学方法与分子光谱分析技术[M].北京:化学工业出版社, 2011.
CHU X L.Chemometrics Methods and Molecular Spectroscopy Analysis Technology[M].Beijing:Chemical Industry Press, 2011.
[13] 郭涛, 黄右琴, 郭龙, 等.利用近红外光谱技术快速预测苜蓿干草营养成分含量[J].草业科学, 2020, 37(11):2 374-2 381.
GUO T, HUANG Y Q, GUO L, et al.Rapid prediction of nutrient content of alfalfa hay by using near infrared spectroscopy[J].Pratacultural Science, 2020, 37(11):2 374-2 381.
[14] GIARETTA E, MORDENTI A, PALMONARI A, et al.NIRS calibration models for chemical composition and fatty acid families of raw and freeze-dried beef:A comparison[J].Journal of Food Composition and Analysis, 2019, 83:103257.
[15] TEIXEIRA A, OLIVEIRA A, PAULOS K, et al.An approach to predict chemical composition of goat Longissimus thoracis et lumborum muscle by near infrared reflectance spectroscopy[J].Small Ruminant Research, 2015, 126:40-43.
[16] PULLANAGARI R R, YULE I J, AGNEW M.On-line prediction of lamb fatty acid composition by visible near infrared spectroscopy[J].Meat Science, 2015, 100:156-163.
[17] KAMRUZZAMAN M, ELMASRY G, SUN D W, et al.Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression[J].Innovative Food Science and Emerging Technologies, 2012, 16:218-226.
[18] BRØNDUM J, MUNCK L, HENCKEL P, et al.Prediction of water-holding capacity and composition of porcine meat by comparative spectroscopy[J].Meat Science, 2000, 55(2):177-185.
[19] 赵文英, 花锦, 张梨花, 等.近红外光谱测定不同鲜肉肉糜中蛋白质含量[J].食品与机械, 2017, 33(1):48-50;118.
ZHAO W Y, HUA J, ZHANG L H, et al.Prediction on protein concentration of fresh minced meat using near-infrared spectroscopy[J].Food & Machinery, 2017, 33(1):48-50;118.
[20] RIPOLL G, ALBERTI P, PANEA B, et al.Near-infrared reflectance spectroscopy for predicting chemical, instrumental and sensory quality of beef[J].Meat Science, 2008, 80(3):697-702.
[21] PRIETO N, ANDRES S, GIRALDEZ F J, et al.Potential use of near infrared reflectance spectroscopy(NIRS)for the estimation of chemical composition of oxen meat samples[J].Meat Science, 2007, 74(3):487-496.
[22] 陶琳丽, 杨秀娟, 邓君明, 等.畜禽肉化学成分近红外光谱检测技术研究进展[J].光谱学与光谱分析, 2013(11):3 002-3 009.
TAO L L, YANG X J, DENG J M, et al.Application of near infrared reflectance spectroscopy to predict meat chemical compositions:A review[J].Spectroscopy and Spectral Analysis, 2013(11):3 002-3 009.
[23] 亐开兴, 吴金亮, 杨凯, 等.利用近红外光谱建立牛肉理化品质预测模型[J].草食家畜, 2018(5):14-23.
QU K X, WU J L, YANG K, et al.Establishing prediction model of physicochemical qualities of beef by near infrared spectroscopy[J].Grass-feeding Livestock, 2018(5):14-23.
[24] 刘哲, 王玉琴, 薛树媛, 等.近红外漫反射光谱定量分析天然牧草营养成分[J].草地学报, 2018, 26(1):249-255.
LIU Z, WANG Y Q, XUE S Y, et al.Quantitative analysis of herbage nutritional components on natural pasture by near infrared diffuse reflectance spectroscopy[J].Acta Agrestia Sinica, 2018, 26(1):249-255.