研究报告

代谢改造酿酒酵母生产番茄红素

  • 李方迪 ,
  • 李由然 ,
  • 张梁 ,
  • 丁重阳 ,
  • 顾正华 ,
  • 石贵阳 ,
  • 徐沙
展开
  • 1(江南大学 粮食发酵工艺与技术国家工程实验室,江苏 无锡,214122)
    2(江南大学 生物工程学院,江苏 无锡,214122)
第一作者:硕士研究生(徐沙副教授为通信作者,E-mail:xusha1984@jiangnan.edu.cn)

收稿日期: 2022-01-05

  修回日期: 2022-02-14

  网络出版日期: 2023-01-05

基金资助

国家重点研发计划项目(2019YFA0905500)

Metabolic engineering of Saccharomyces cerevisiae for lycopene production

  • LI Fangdi ,
  • LI Youran ,
  • ZHANG Liang ,
  • DING Zhongyang ,
  • GU Zhenghua ,
  • SHI Guiyang ,
  • XU Sha
Expand
  • 1(National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China)
    2(School of Biotechnology, Jiangnan University, Wuxi 214122, China)

Received date: 2022-01-05

  Revised date: 2022-02-14

  Online published: 2023-01-05

摘要

番茄红素是一种具有较高商业价值的萜类化合物,具有良好的抗氧化性,对心血管疾病有预防作用,可通过微生物发酵法高效生产。为了提高酿酒酵母胞内番茄红素积累,过量表达了三酰甘油途径(TAG途径)的关键基因dga1(酰基辅酶A:二酰基甘油酰基转移酶)、pah1(磷脂酸磷酸酶),同时敲入ldp1(脂滴附着蛋白);继续在ypl062w位点敲入来源于肠沙门氏菌的acs1L641P(胞内乙酰CoA合成酶),为番茄红素和脂质载体提供充足的前体;过表达pap1(聚腺苷酸聚合酶)以满足多个基因过表达的转录需求。综上,该文构建了一个适合番茄红素累积的细胞工厂,番茄红素单位产量为109.26 mg/g DCW。该研究通过代谢改造得到1株高产番茄红素重组菌,研究结果为后续进行发酵优化奠定了基础。

本文引用格式

李方迪 , 李由然 , 张梁 , 丁重阳 , 顾正华 , 石贵阳 , 徐沙 . 代谢改造酿酒酵母生产番茄红素[J]. 食品与发酵工业, 2022 , 48(23) : 25 -33 . DOI: 10.13995/j.cnki.11-1802/ts.030710

Abstract

Lycopene is a terpenoid compound with high commercial value, which has good antioxidant properties and has a preventive effect on cardiovascular diseases. However, as an antioxidant, lycopene has certain toxicity to cells. According to studies, increasing the intracellular lipid content can effectively alleviate the toxic stress. In this manuscript, we overexpressed the key genes dga1 (acyl-CoA: diacylglycerol acyltransferase) and pah1 (phosphatidic acid phosphatase) of the triacylglycerol pathway (TAG pathway), and knock-in the ldp1 gene (lipid droplet attachment protein) as well, which improved the accumulation of lycopene in the cell. Sufficient precursor is provided by knocking out the ypl062w locus and simultaneously expressing the acs1L641P gene from Salmonella enterica heterologously, for both the lycopene synthesis and the TAG accumulation. pap1 (polynucleotide adenylyltransferase) was overexpressed to meet the transcription requirements of multiple gene overexpression. A cell factory suitable for lycopene accumulation was constructed, in which the unit yield of lycopene reached 109.26 mg/g DCW. A high-yielding lycopene recombinant strain was obtained through metabolic transformation, which laid the foundation for subsequent fermentation optimization.

参考文献

[1] MARIANI S, LIONETTO L, CAVALLARI M, et al.Low prostate concentration of lycopene is associated with development of prostate cancer in patients with high-grade prostatic intraepithelial neoplasia[J].International Journal of Molecular Sciences, 2014, 15(1):1 433-1 440.
[2] MCENENY J, WADE L, YOUNG I S, et al.Lycopene intervention reduces inflammation and improves HDL functionality in moderately overweight middle-aged individuals[J].Journal of Nutritional Biochemistry, 2013, 24(1):163-168.
[3] MARKHAM K A, ALPER H S.Synthetic biology expands the industrial potential of Yarrowia lipolytica[J].Trends in Biotechnology, 2018, 36(10):1 085-1 095.
[4] LIU N, LIU B, WANG G, et al.Lycopene production from glucose, fatty acid and waste cooking oil by metabolically engineered Escherichia coli[J].Biochemical Engineering Journal, 2020, 155:107488.
[5] ZLAB C,NL A,ZLA D, et al.Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity[J].Metabolic Engineering, 2020, 61:344-351.
[6] LI L, LIU Z, JIANG H, et al.Biotechnological production of lycopene by microorganisms[J].Applied Microbiology and Biotechnology, 2020, 104(24):10 307-10 324.
[7] LEBER R, ZINSER E, ZELLNIG G, et al.Characterization of lipid particles of the yeast, Saccharomyces cerevisiae[J].Yeast, 1994, 10(11):1 421-1 428.
[8] WANG J, LEDESMA-AMARO R, WEI Y, et al.Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica:A Review[J].Bioresource Technology, 2020, 313:123707.
[9] DOUROU M, AGGELI D, PAPANIKOLAOU S, et al.Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms[J].Applied Microbiology and Biotechnology, 2018, 102(6):2 509-2 523.
[10] VAN ROSSUM H M, KOZAK B U, PRONK J T, et al.Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae:Pathway stoichiometry, free-energy conservation and redox-cofactor balancing[J].Metabolic Engineering, 2016, 36:99-115.
[11] 陈孚江, 周景文, 史仲平, 等.乙酰辅酶A合成代谢对酿酒酵母生理功能的影响[J].微生物学报, 2010, 50(9):1 172-1 179.
CHEN F J, ZHOU J W, SHI Z P, et al.Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae[J].Acta Microbiologica Sinica, 2010, 50(9):1 172-1 179.
[12] CHEN Y, WANG Y, LIU M, et al.Primary and secondary metabolic effects of a key gene deletion (ΔYPL062W) in metabolically engineered terpenoid-producing Saccharomyces cerevisiae[J].Applied and Environmental Microbiology, 2019, 85(7):AEM.01990-18.
[13] TRIKKA F A, NIKOLAIDIS A, ATHANASAKOGLOU A, et al.Iterative carotenogenic screens identify combinations of yeast gene deletions that enhance sclareol production[J].Microbial Cell Factories, 2015, 14:60.
[14] MEINKE G, EZEOKONKWO C, BALBO P, et al.Structure of yeast poly(A) polymerase in complex with a peptide from Fip1, an intrinsically disordered protein[J].Biochemistry, 2008, 47(26):6 859-6 869.
[15] MA T, SHI B, YE Z, et al.Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene[J].Metabolic Engineering, 2019, 52:134-142.
[16] ZHU Z W, DING Y F, GONG Z W, et al.Dynamics of the lipid droplet proteome of the oleaginous yeast Rhodosporidium toruloides[J].Eukaryotic Cell, 2015, 14(3):252-264.
[17] 孙玲, 王均华, 蒋玮, 等.高效合成番茄红素酿酒酵母菌株的构建[J].生物工程学报, 2020, 36(7):1 334-1 345.
SUN L, WANG J H, JIANG W, et al.Construction of a highly efficient synthetic lycopene engineered Saccharomyces cerevisiae[J].Chinese Journal of Biotechnology, 2020, 36(7):1 334-1 345.
[18] PLOIER B, DAUM G, PETROVIČ U.Molecular mechanisms in yeast carbon metabolism:Lipid metabolism and lipidomics[M].Molecular Mechanisms in Yeast Carbon Metabolism.Berlin, Heidelberg:Springer Berlin Heidelberg, 2014:169-215.
[19] SHI B, MA T, YE Z, et al.Systematic metabolic engineering of Saccharomyces cerevisiae for lycopene overproduction[J].Journal of Agricultural and Food Chemistry, 2019, 67(40):11 148-11 157.
[20] SHIBA Y, PARADISE E M, KIRBY J, et al.Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids[J].Metabolic Engineering, 2007, 9(2):160-168.
文章导航

/