研究报告

驼乳源乳铁蛋白嵌合肽对口腔致龋菌抗菌作用的初步探究

  • 李梦雨 ,
  • 伊丽 ,
  • 吉日木图
展开
  • (内蒙古农业大学 食品科学与工程学院,内蒙古 呼和浩特,010000)
第一作者:硕士研究生(吉日木图教授为通信作者,E-mail:yeluotuo1999@vip.163.com)

收稿日期: 2022-02-04

  修回日期: 2022-03-18

  网络出版日期: 2023-02-15

基金资助

国家重点研发计划项目(2020YFE0203300);双一流学科创新团队建设项目(NDSC2018-14);高层次人才引进科研启动项目(NDYB2018-48);内蒙古自治区科技成果转化项目(2021CG0021);内蒙古自然科学基金项目(2020BS03011;2020BS03040);内蒙古自治区科技成果转化专项项目(AMCG201911);关键技术攻关计划项目(2019GG359)

Mechanism by LFA-LFC chimeric peptide on oral cariogenic bacteria

  • LI Mengyu ,
  • YI Li ,
  • JI Rimutu
Expand
  • (College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010000, China)

Received date: 2022-02-04

  Revised date: 2022-03-18

  Online published: 2023-02-15

摘要

该研究旨在评估驼乳源乳铁蛋白(lactoferrampin-lactoferricin, LFA-LFC)嵌合肽对变异链球菌、唾液链球菌和远缘链球菌的抗菌效果并初步探究其作用机制。首先预测并鉴定驼乳源LFA-LFC嵌合肽的分子特性和二级结构;通过测定嵌合肽最低抑菌(minimum inhibitory concentration, MIC)、杀菌浓度(minimum bactericidal concentration, MBC),绘制时间-致死曲线,评估嵌合肽的抗菌效果;分析嵌合肽对生物膜的预防、消除作用。采用电子显微镜观察嵌合肽对细菌的作用位点,测定菌体DNA迁移率,对嵌合肽的抗菌机制进行初步研究。结果表明,驼乳源LFA-LFC嵌合肽对变异链球菌、唾液链球菌和远缘链球菌的最低抑菌浓度分别为32、32、64 μmol/L;最低杀菌浓度分别为128、128、256 μmol/L;细菌在1×MIC嵌合肽浓度处理30 min后完全致死;当嵌合肽浓度为128 μmol/L时预防生物膜生成约80%,512 μmol/L时消除生物膜约50%;4×MIC嵌合肽浓度处理细菌后发现其细胞膜均出现裂解,DNA未发生迁移。该研究认为驼乳源LFA-LFC嵌合肽对3株菌表现出显著的抗菌效果,嵌合肽可通过破坏细菌细胞膜,进入细胞内部作用于DNA,抑制细菌生长繁殖。

本文引用格式

李梦雨 , 伊丽 , 吉日木图 . 驼乳源乳铁蛋白嵌合肽对口腔致龋菌抗菌作用的初步探究[J]. 食品与发酵工业, 2023 , 49(2) : 54 -62 . DOI: 10.13995/j.cnki.11-1802/ts.031044

Abstract

The aim of this study was to evaluate the antibacterial effect of camel milk-derived lactoferrampin-lactoferricin (LFA-LFC) chimeric peptides against Streptococcus mutans, Streptococcus salivarius, and Streptococcus sobrinus and to investigate the mechanism of action. The molecular properties and secondary structure of the camel milk LFA-LFC chimeric peptide were predicted and characterized. The antibacterial effect of the chimeric peptide was evaluated by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) and plotting the time-lethal curve. The preventive and eliminative effects of the chimeric peptide on biofilm was determined. The action sites of chimeric peptide on bacteria were observed by electron microscopy, and the DNA migration rate of the bacteria was measured. The results showed that MIC of LFA-LFC chimeric peptide were 32, 32, and 64 μmol/L for S. mutans, S. salivarius and S. salivarius, respectively. The MBC were 128, 128, and 256 μmol/L, respectively. The bacteria were lethal after 30 min treated with 1×MIC chimeric peptide concentration. When the chimeric peptide concentration was 128 μmol/L, 80% of biofilm formation was prohibited, and at 512 μmol/L, about 50% of biofilm were eliminated. When 4×MIC chimeric peptide concentrations were used to treat the bacteria, all cell membranes were cleaved and no DNA migration occurred. The camel milk-derived LFA-LFC chimeric peptide showed significant antibacterial effects against the three strains of bacteria; the chimeric peptide could inhibit the growth and reproduction of bacteria by disrupting the bacterial cell membrane and entering the cell to act on the DNA.

参考文献

[1] NIUJ Y, YIN I X, WU W K K, et al.Antimicrobial peptides for the prevention and treatment of dental caries:A concise review[J].Archives of Oral Biology, 2021, 122:105022.
[2] SELWITZ R H, ISMAIL A I, PITTS N B.Dental caries[J].Lancet, 2007, 369(9 555):51-59.
[3] 王雨霏, 陈相书, 张凌琳.细菌抗菌肽耐药机制研究进展[J].微生物学报, 2019, 59(8):1 419-1 428.
WANG Y F, CHEN X S, ZHANG L L.Advances in studying bacterial resistance to antimicrobial peptides[J].Acta Microbiologica Sinica, 2019, 59(8):1 419-1 428.
[4] TAO R C, JUREVIC R J, COULTON K K, et al.Salivary antimicrobial peptide expression and dental caries experience in children[J].Antimicrobial Agents and Chemotherapy, 2005, 49(9):3 883-3 888.
[5] MAI S, MAUGER M T,NIU L N, et al.Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections[J].Acta Biomaterialia, 2017, 49:16-35.
[6] DIAZ P I, CHALMERS N I, RICKARD A H, et al.Molecular characterization of subject specific oral microflora during initial colonization of enamel[J].Applied and Environmental Microbiology, 2006, 72(4):2 837-2 848.
[7] BERLUTTI F, AJELLO M, BOSSO P, et al.Both lactoferrin and iron influence aggregation and biofilm formation in Streptococcus mutans[J].Biometals, 2004, 17(3):271-278.
[8] 冯梦雅, 崔莉, 刘健康, 等. 骆驼乳的营养价值及在预防疾病中的应用与作用机制研究进展[J]. 食品科学, 2022, 43(11):392-401.
FENG M Y, CUI L, LIU J K, et al. Progress in understanding the nutritional value of camel milk and its application and mechanism of action in preventing diseases[J]. Food Science, 2022, 43(11):392-401.
[9] 杜娟. P26抗菌肽的抗菌活性及作用机制研究[D].合肥:安徽农业大学, 2020.
DU J.Study on antibacterial activity and mechanism of antibacterial peptide P26[D].Hefei:Anhui Agricultural University, 2020.
[10] 练家惠, 陈向东, 汪辉, 等.人工合成抗菌肽生物信息学分析及其抑菌活性研究[J].药学与临床研究, 2020, 28(4):251-254.
LIAN J H, CHEN X D, WANG H, et al.Bioinformatics and antimicrobial activity of a remoulded antimicrobial peptide[J].Pharmaceutical and Clinical Research, 2020, 28(4):251-254.
[11] LAZZARO B P, ZASLOFF M, ROLFF J.Antimicrobial peptides:Application informed by evolution[J].Science, 2020, 368(6 490):eaau5480.
[12] 梁东生, 李焕影, 许晓虎, 等.抗变异链球菌多肽的设计、筛选及抗菌效果评价[J].南方医科大学学报, 2019, 39(7):823-829.
LIANG D S, LI H Y, XU X H, et al.Design, screening and antimicrobial activity of novel peptides against Streptococcus mutans[J].Journal of Southern Medical University, 2019, 39(7):823-829.
[13] TU H X, FAN Y Y, LU X P, et al.Activity of synthetic antimicrobial peptide GH12 against oral streptococci[J].Caries Research, 2016, 50(1):48-61.
[14] 钟亨任. 海南沼蛙Temporin及Brevinin抗菌肽对革兰氏阳性菌生物被膜的抑制作用[D].海口:海南大学, 2019.
ZHONG H R. Inhibition of gram-positive bacterial biofilm by antibacterial peptides Temporin and Brevinin from Hylarana guentheri skin of Hainan[D].Haikou:Hainan University, 2019.
[15] 何佳宁, 梁东生, 梁悦娥, 等.新型抗菌肽KR-1的设计、筛选及抗菌活性评价[J].南方医科大学学报, 2021, 41(6):923-930.
HE J N, LIANG D S, LIANG Y E, et al.Design,screening and antibacterial activity evaluation of the novel antibacterial peptide KR-1[J].Journal of Southern Medical University, 2021, 41(6):923-930.
[16] 罗瑞平, 李杏崧, 方滨.加强护理干预对重症患者口腔pH值的影响与预防口腔异味及呼吸机相关性肺炎的效果分析[J].中国现代药物应用, 2020, 14(22):243-244.
LUO R P, LI X S, FANG B.Effects of intensive nursing intervention on oral pH value and prevention of oral odor and ventilator-associated pneumonia in severe patients[J].Chinese Journal of Modern Drug Application, 2020, 14(22):243-244.
[17] 营秀. 新型优化多肽pm11对口腔常见微生物杀菌作用的初步研究[D].合肥:安徽医科大学, 2016.
YING X.The preliminary study of antimicrobial effect of pm11 peptide on oral microorganisms[D].Hefei:Anhui Medical University, 2016.
[18] 魏诗. 抗菌肽对口腔常见致病菌及biofilm的抑制作用以及抗炎活性的研究[D].大连:辽宁师范大学, 2013.
WEI S. Effect of antimicrobial peptides on the growth of oral pathogens and Streptococcus mutans biofilm and anti-inflammatory activity[D].Dalian:Liaoning Normal University, 2013.
[19] ZHANG L Y, FANG Z H, LI Q L, et al.A tooth-binding antimicrobial peptide to prevent the formation of dental biofilm[J].Journal of Materials Science:Materials in Medicine, 2019, 30(4):45.
[20] 李欣蔚, 王雨霏, 姜文韬, 等.抗菌肽GH12对龋相关三菌种生物膜形貌及菌种构成的影响[J].华西口腔医学杂志, 2021, 39(2):188-194.
LI X W, WANG Y F, JIANG W T, et al.Effects of antimicrobial peptide GH12 on the morphology and composition of cariogenic three-species biofilm[J].West China Journal of Stomatology, 2021, 39(2):188-194.
[21] LEIVA-SABADINI C, ALVAREZ S, BARRERA N P, et al.Antibacterial effect of honey-derived exosomes containing antimicrobial peptides against oral streptococci[J].International Journal of Nanomedicine, 2021, 16:4 891-4 900.
[22] 贾丽丽. 新型抗菌肽对口腔细菌及其生物膜的抑制作用和应用研究[D].北京:北京化工大学, 2016.
JIA L L. The inhibition and application of a novel antibacterial peptide against oral pathogens and biofilm[D].Beijing:Beijing University of Chemical Technology, 2016.
[23] 耿红娟. 应用双功能嵌合肽修饰钛种植体表面抑制生物膜形成的研究[D].天津:天津医科大学, 2018.
GENG H J.Engineered chimeric peptides with antimicrobial and titanium-binding functions to inhibit biofilm formation on Ti implants[D].Tianjin:Tianjin Medical University, 2018.
[24] WANG Q, MIAO J Y, FENG K L, et al.Antibacterial action of peptide F1 against colistin resistance E.coli SHP45 (mcr-1)[J].Food & Function, 2020, 11(11):10 231-10 241.
[25] LAN Y, YE J, KOZLOWSKA J, et al.Structural contributions to the intracellular targeting strategies of antimicrobial peptides[J].Biochimica et Biophysica Acta (BBA)-Biomembranes, 2010, 1 798(10):1 934-1 943.
文章导航

/