研究报告

海带、坛紫菜和裙带菜游离和结合酚抗氧化和酶抑制活性比较

  • 彭春彦 ,
  • 谢星 ,
  • 李一华 ,
  • 胡朋朋 ,
  • 谢作桦 ,
  • 涂宗财 ,
  • 张露
展开
  • 1(江西师范大学 生命科学学院,国家淡水鱼加工技术研发专业中心,江西 南昌,330022)
    2(江西德上制药股份有限公司,江西 樟树,331200)
    3(南昌大学,食品科学与技术国家重点实验室,江西 南昌,330047)
硕士研究生(张露教授为通信作者,E-mail:zhanglu00104@163.com)

收稿日期: 2022-03-20

  修回日期: 2022-04-22

  网络出版日期: 2023-03-20

基金资助

国家重点研发计划“蓝色粮仓科技创新”专项项目(2018YFD0901101)

Antioxidant and enzyme inhibition activities of free and bound phenolics of Laminaria japonica, Porphyra haitanensis, and Undaria pinnatifida

  • PENG Chunyan ,
  • XIE Xing ,
  • LI Yihua ,
  • HU Pengpeng ,
  • XIE Zuohua ,
  • TU Zongcai ,
  • ZHANG Lu
Expand
  • 1(College of Life Science and National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China)
    2(Jiangxi Deshang Pharmaceutical Co. Ltd., Zhangshu 331200, China)
    3(State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China)

Received date: 2022-03-20

  Revised date: 2022-04-22

  Online published: 2023-03-20

摘要

海带、坛紫菜和裙带菜是我国大型经济海藻,具有丰富的营养价值和保健功能。该文对比研究了海带、坛紫菜和裙带菜中游离和结合酚提取物的总酚含量、总黄酮含量、抗氧化能力,以及α-葡萄糖苷酶、酪氨酸酶和乙酰胆碱酯酶的抑制能力,旨在为3种海藻的高附加值开发提供指导。结果表明,3种海藻原料中均以结合酚为主,坛紫菜结合酚提取物具有最高的总酚含量(干物质内含量)(863.53 μg/g)[以没食子酸当量(gallic acid equivalent,GAE)计],其次为裙带菜结合酚提取物(819.67 μg GAE/g);裙带菜游离酚提取物中的总黄酮含量最高(干物质内含量)(49.31 μg/g)[以槲皮素当量(quercetin equivalent,QE)计]。海带结合酚提取物具有最强的DPPH自由基清除和酪氨酸酶活性抑制能力,裙带菜结合酚提取物的α-葡萄糖苷酶和乙酰胆碱酯酶抑制能力最强,而坛紫菜游离酚提取物的ABTS阳离子自由基清除能力最强,IC50值分别为401.19、196.28、156.52、289.46、213.21 μg/mL,海带和裙带菜结合酚提取物的铁离子还原能力较好,且无显著差异(P>0.05)。相关性分析表明,酚类化合物是3种海藻提取物中主要的抗氧化和酶活性抑制成分。因此,相比于其他两种海藻,海带作为抗氧化剂和酪氨酸酶抑制剂的开发潜力更大,裙带菜可作为α-葡萄糖苷酶和乙酰胆碱酯酶抑制剂的潜在资源。

本文引用格式

彭春彦 , 谢星 , 李一华 , 胡朋朋 , 谢作桦 , 涂宗财 , 张露 . 海带、坛紫菜和裙带菜游离和结合酚抗氧化和酶抑制活性比较[J]. 食品与发酵工业, 2023 , 49(4) : 110 -116 . DOI: 10.13995/j.cnki.11-1802/ts.031639

Abstract

Laminaria japonica, Porphyra haitanensis and Undaria pinnatifida are large-economic seaweeds in China with abundant nutritional value and health care function. In this work, the total phenolics content, total flavonoids content, antioxidant activity and inhibition on α-glucosidase, tyrosinase and acetylcholinesterase of their free and bound phenolics extracts were compared to provide a guidance for their high value-added application. The results showed that the three kinds of seaweed were mainly composed of bound phenolics. The bound phenolics extract of P. haitanensis had the highest total phenolics content(dry weight)(863.53 μg GAE/g), followed by the bound extract of U. pinnatifida (819.67 μg GAE/g). The free phenolics extracts of U. pinnatifida had the highest total flavonoids content (dry weight)(49.31 μg QE/g). The bound phenolics extract of L. japonica had the best DPPH radical scavenging and tyrosinase inhibitory abilities, while the strongest α-glucosidase and acetylcholines inhibition were found on the bound phenolics extract of U. pinnatifida, free phenolics extract of P. haitanensis exhibited the highest ABTS cation radical scavenging ability, the IC50 value was 401.19, 196.28, 156.52, 289.46 and 213.21 μg/mL, respectively. The bound phenolics extract of L. japonica and U. pinnatifida had a better iron ion reduction ability and there was no significant difference (P>0.05). The correlation analysis showed that phenolics compounds were the main components of antioxidant and enzyme inhibitors in the extracts of three algae. Thus, compared with the other two seaweeds, L. japonica had a greater development potential as antioxidant and tyrosinase inhibitor, and U. pinnatifida can be used as a potential resource for α-glucosidase and acetylcholinesterase inhibitor.

参考文献

[1] GABBIA D, DE MARTIN S. Brown seaweeds for the management of metabolic syndrome and associated diseases[J]. Molecules (Basel, Switzerland), 2020, 25(18):4182.
[2] LEANDRO A, PEREIRA L, GONÇALVES A M M.Diverse applications of marine macroalgae[J].Marine Drugs, 2019, 18(1):17.
[3] 张仪欣, 佟长青, 李伟.褐藻生物活性物质研究现状[J].农产品加工, 2019(14):78-80;83.
ZHANG Y X, TONG C Q, LI W.The studies of bioactive substances from brown algae[J].Farm Products Processing, 2019(14):78-80;83.
[4] 杨贤庆, 黄海潮, 潘创,等.紫菜的营养成分、功能活性及综合利用研究进展[J].食品与发酵工业, 2020, 46(5):306-313.
YANG X Q, HUANG H C, PAN C, et al.Advances on nutrient components, biological activities and comprehensive utilization of Porphyra[J].Food and Fermentation Industies, 2020, 46 (5):306-313.
[5] 江涛, 费帆, 方婷.紫菜生物活性成分及其应用研究进展[J].食品研究与开发, 2021, 42(21):162-167.
JIANG T, FEI F, FANG T.Research progress on the bioactive components of Porphyra and its application[J].Food Research and Development, 2021, 42 (21):162-167.
[6] 汪群,雷思佳,付慧娟,等.海带多酚提取工艺优化及抗氧化性研究[J].深圳职业技术学院学报,2021,20(1):36-41.
WANG Q, LEI S J, FU H J, et al. Optimization of extraction technique of polyphenols from Laminaria japonica and its antioxidant activity[J]. Journal of Shenzhen Polytechnic, 2021, 20(1):36-41.
[7] 刘剑波. 我国裙带菜加工利用技术研究进展[J].河北渔业, 2021(3):42-44;46.
LIU J B.Research on processing and utilization technology of Undaria pinnatifida in China[J].Hebei Fisheries, 2021(3):42-44;46.
[8] WANG L, PARK Y J, JEON Y J, et al.Bioactivities of the edible brown seaweed, Undaria pinnatifida:A review[J].Aquaculture, 2018, 495:873-880.
[9] WANG Z Y, LI S Y, GE S H, et al.Review of distribution, extraction methods, and health benefits of bound phenolics in food plants[J].Journal of Agricultural and Food Chemistry, 2020, 68(11):3 330-3 343.
[10] ZHANG Y, BAI B, YAN Y, et al.Bound polyphenols from red quinoa prevailed over free polyphenols in reducing postprandial blood glucose rises by inhibiting α-glucosidase activity and starch digestion[J].Nutrients, 2022, 14(4):728.
[11] ZHENG Y T, LIU S, XIE J H, et al.Antioxidant, α-amylase and α-glucosidase inhibitory activities of bound polyphenols extracted from mung bean skin dietary fiber[J].LWT, 2020, 132:109943.
[12] HUANG Z T, CHEN Q Q, HU K X, et al.Effects of in vitro simulated digestion on the free and bound phenolic content and antioxidant activity of seven species of seaweeds[J].International Journal of Food Science and Technology, 2021, 56(5):2 365-2 374.
[13] ONS K, MOHAMED N M, THIERRY M, et al.In vitro evaluation of antioxidant activities of free and bound phenolic compounds from Posidonia oceanica (I.) Delile leaves[J].African Journal of Biotechnology, 2011, 10(16):3 176-3 185.
[14] SUN S W, HUANG S Q, SHI Y N, et al.Extraction, isolation, characterization and antimicrobial activities of non-extractable polyphenols from pomegranate peel[J].Food Chemistry, 2021, 351:129232.
[15] 张露, 刘鹏飞, 涂宗财, 等.香榧不同部位提取物的抗氧化和酶抑制活性比较分析[J].食品科学, 2018, 39(10):78-83.
ZHANG L, LIU P F, TU Z C, et al.Comparison of antioxidant activity and enzyme inhibitory activity of different plant parts of Torreya grandis cv.merrillii[J].Food Science, 2018, 39 (10):78-83.
[16] 赵国玲, 刘承初, 谢晶, 等.坛紫菜不同溶剂组分的抗氧化活性[J].食品科学, 2010, 31(17):186-191.
ZHAO G L, LIU C C, XIE J, et al.Antioxidant effects of the soxhlet extraction product from Porphyra haitanensis and its different solvent-soluble fractions[J].Food Science, 2010, 31 (17):186-191.
[17] PEDRO B, GUEDES L, ANDRÉ R, et al.Undaria pinnatifida (U.pinnatifida) bioactivity:Antioxidant, gastro-intestinal motility, cholesterol biosynthesis and liver cell lines proteome[J].Journal of Functional Foods, 2021, 83:104567.
[18] 陈洪彬, 宋露露, 金瑾萱, 等.坛紫菜多酚提取工艺及体外抗氧化与抑菌活性研究[J].食品与机械, 2018, 34(9):157-161.
CHEN H B, SONG L L, JIN J X, et al.The extraction process of polyphenols from Porphyra haitanensis and their antioxidant and antimicrobial activities in vitro[J].Food and Machinery, 2018, 34 (9):157-161.
[19] 邢慧颖, 黄莉, 丁波, 等.体外消化对不同极性植物多酚的抗氧化能力及生物利用度的影响[J].食品与发酵工业, 2020, 46(16):70-77.
XING H Y, HUANG L, DING B, et al.Effects of in vitro digestion on antioxidant activity and bioavailability of plant polyphenols with different polarities[J].Food and Fermentation Industries, 2020, 46 (16):70-77.
[20] JESUMANI V, DU H, PEI P B, et al.Comparative study on skin protection activity of polyphenol-rich extract and polysaccharide-rich extract from Sargassum vachellianum[J].PLoS One, 2020, 15(1):e0227308.
[21] KANG S Y, KIM E, KANG I, et al.Anti-diabetic effects and anti-inflammatory effects of Laminaria japonica and Hizikia fusiforme in skeletal muscle:In vitro and in vivo model[J].Nutrients, 2018, 10(4):491.
[22] MACHU L, MISURCOVA L, AMBROZOVA J V, et al.Phenolic content and antioxidant capacity in algal food products[J].Molecules(Basel, Switzerland), 2015, 20(1):1 118-1 133.
[23] DIRIR A M, DAOU M, YOUSEF A F, et al.A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes[J].Phytochemistry Reviews, 2022,21(4):1 049-1 079.
[24] QU Y W, ZHAN Q, DU S B, et al.Catalysis-based specific detection and inhibition of tyrosinase and their application[J].Journal of Pharmaceutical Analysis, 2020, 10(5):414-425.
[25] KANLAYAVATTANAKUL M, LOURITH N.Biologically active phenolics in seed coat of three sweet Tamarindus indica varieties grown in thailand[J].Advanced Science, Engineering and Medicine, 2012, 4(6):511-516.
[26] CHOU T H, DING H Y, HUNG W J, et al.Antioxidative characteristics and inhibition of alpha-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from origanum vulgare[J].Experimental Dermatology, 2010, 19(8):742-750.
[27] SHEN P, GU Y, ZHANG C X, et al.Metabolomic approach for characterization of polyphenolic compounds in Laminaria japonica, Undaria pinnatifida, Sargassum fusiforme and Ascophyllum nodosum[J].Foods(Basel, Switzerland), 2021, 10(1):192.
文章导航

/