综述与专题评论

基于双功能纳米探针的免疫层析技术在食品安全检测中的应用

  • 冷远逵 ,
  • 黄诗锦 ,
  • 陈樨蕊 ,
  • 熊勇华
展开
  • 1(南昌大学 食品学院, 江西 南昌,330047)
    2(南昌大学 中德联合研究院, 江西 南昌,330047)
博士,副教授(冷远逵副教授和熊勇华研究员为共同通信作者,E-mail:yuankuilengxq@163.com;yhxiongchen@163.com)

收稿日期: 2022-05-07

  修回日期: 2022-06-08

  网络出版日期: 2023-04-14

基金资助

国家自然科学基金青年项目(31901780)

Bifunctional nanoprobe-based immunochromatographic assays for food safety monitoring

  • LENG Yuankui ,
  • HUANG Shijin ,
  • CHEN Xirui ,
  • XIONG Yonghua
Expand
  • 1(College of food science and technology, Nanchang University, Nanchang 330047, China)
    2(Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China)

Received date: 2022-05-07

  Revised date: 2022-06-08

  Online published: 2023-04-14

摘要

免疫层析技术在基层食品安全监测中发挥着举足轻重的作用。探针材料是决定免疫层析试纸条检测性能的关键。大量研究表明,基于功能集成化策略的双功能纳米材料作为探针可极大地提升免疫层析方法的性能。基于双信号探针的免疫层析方法、基于磁性光学纳米探针的免疫层析方法和基于探针催化信号放大的多级比色免疫层析方法因优异的分析性能和巨大的应用潜力而备受关注。该文详细阐述了这三类免疫层析技术的原理、发展现状及其在食品安全检测方面的应用,并讨论了该领域的发展趋势和面临的主要挑战。

本文引用格式

冷远逵 , 黄诗锦 , 陈樨蕊 , 熊勇华 . 基于双功能纳米探针的免疫层析技术在食品安全检测中的应用[J]. 食品与发酵工业, 2023 , 49(6) : 300 -307 . DOI: 10.13995/j.cnki.11-1802/ts.032262

Abstract

Immunochromatographic assay (ICA) plays a crucial role in daily food safety inspection. Materials for probes are key factors to determine the analytical performances of ICA test strips. Numerous studies have demonstrated that bifunctional probes based on functional integration can significantly improve the performance of ICA. Dual-signal probe-, magnetic-optical nanoprobe-based ICAs and multilevel colorimetric ICA reinforced by signal amplification generated by catalytic probes have attracted much attention due to their manifested analytical properties and application potential. Herein, we review the principles of the above three types of ICAs, their recent advances, and applications for food safety. We also discuss the challenges and future prospects of this field.

参考文献

[1] 田亚晨,王淑娟,马兰,等.纳米颗粒在侧流免疫层析技术中的应用研究进展[J].食品科学,2019,40(17):348-356.
TIAN Y C, WANG S J, MA L, et al.Recent progress on nanoparticles in lateral flow immunochromatographic strip[J].Food science, 2019, 40 (17):348-356.
[2] SU L H, HU H L, TIAN Y L, et al.Highly sensitive colorimetric/surface-enhanced Raman spectroscopy immunoassay relying on a metallic core-shell Au/Au nanostar with clenbuterol as a target analyte[J].Analytical Chemistry, 2021, 93(23):8 362-8 369.
[3] GUO L, SHAO Y N, DUAN H, et al.Magnetic quantum dot nanobead-based fluorescent immunochromatographic assay for the highly sensitive detection of aflatoxin B1 in dark soy sauce[J].Analytical chemistry, 2019, 91(7):4 727-4 734.
[4] CAI X F, LIANG M J, MA F, et al.Nanozyme-strip based on MnO2 nanosheets as a catalytic label for multi-scale detection of aflatoxin B1 with an ultrabroad working range[J].Food Chemistry, 2022, 377:131965.
[5] SU L H, CHEN Y Q, WANG L L, et al.Dual-signal based immunoassay for colorimetric and photothermal detection of furazolidone[J].Sensors and Actuators B:Chemical, 2021, 331:129431.
[6] HUANG Z, XIONG Z J, CHEN Y, et al.Sensitive and matrix-tolerant lateral flow immunoassay based on fluorescent magnetic nanobeads for the detection of clenbuterol in swine urine[J].Journal of agricultural and food chemistry, 2019, 67(10):3 028-3 036.
[7] ZHANG M, BU T, TIAN Y, et al.Fe3O4@ CuS-based immunochromatographic test strips and their application to label-free and dual-readout detection of Escherichia coli O157:H7 in food[J].Food Chemistry, 2020, 332:127398.
[8] ZHOU Y F, HUANG X L, HU X Y, et al.Recent advances in colorimetry/fluorimetry-based dual-modal sensing technologies[J].Biosensors and Bioelectronics, 2021, 190:113386.
[9] BU T, BAI F E, ZHAO S, et al.Dual-modal immunochromatographic test for sensitive detection of zearalenone in food samples based on biosynthetic Staphylococcus aureus-mediated polymer dot nanocomposites[J].Analytical Chemistry, 2022, 94 (14):5 546-5 554.
[10] WANG S, SHEN W Z, ZHENG S, et al.Dual-signal lateral flow assay using vancomycin-modified nanotags for rapid and sensitive detection of Staphylococcus aureus[J].RSC Advances, 2021, 11(22):13 297-13 303.
[11] HE K Y, BU T, ZHENG X H, et al.“Lighting-up” methylene blue-embedded zirconium based organic framework triggered by Al3+ for advancing the sensitivity of E.coli O157∶H7 analysis in dual-signal lateral flow immunochromatographic assay[J].Journal of Hazardous Materials, 2022, 425:128034.
[12] WANG Z X, XING K Y, DING N S, et al.Lateral flow immunoassay based on dual spectral-overlapped fluorescence quenching of polydopamine nanospheres for sensitive detection of sulfamethazine[J].Journal of Hazardous Materials, 2022, 423:127204.
[13] SHIRSHAHI V, TABATABAEI S N, HATAMIE S, et al.Photothermal enhancement in sensitivity of lateral flow assays for detection of E.coli O157:H7[J].Colloids and Surfaces B:Biointerfaces, 2020, 186:110721.
[14] ZHANG M, BU T, BAI F E, et al.Gold nanoparticles-functionalized three-dimensional flower-like manganese dioxide:A high-sensitivity thermal analysis immunochromatographic sensor[J].Food Chemistry, 2021, 341:128231.
[15] LIN L K, STANCIU L A.Bisphenol A detection using gold nanostars in a SERS improved lateral flow immunochromatographic assay[J].Sensors and Actuators B:Chemical, 2018, 276:222-229.
[16] ZHENG S, WANG C G, LI J X, et al.Graphene oxide-based three-dimensional Au nanofilm with high-density and controllable hotspots:A powerful film-type SERS tag for immunochromatographic analysis of multiple mycotoxins in complex samples[J].Chemical Engineering Journal, 2022, 448:137760.
[17] HE D Y, WU Z E, CUI B, et al.Establishment of a dual mode immunochromatographic assay for Campylobacter jejuni detection[J].Food Chemistry, 2019, 289:708-713.
[18] WANG W W, OUYANG H.Luminol-reduced Au nanoparticles-based dual-signal immunochromatographic test strip for pesticide residues[J].Microchemical Journal, 2019, 149:104055.
[19] JIANG S, ZHANG L X, LI J Z, et al.Pressure/colorimetric dual-readout immunochromatographic test strip for point-of-care testing of aflatoxin B1[J].Talanta, 2021, 227:122203.
[20] ZHANG X Y, DING M Y, MAO Y X, et al.A comparative study of “turn-off” mode and “turn-on” mode lateral flow immunoassay for T-2 toxin detection[J].Sensors and Actuators B:Chemical, 2022, 359:131545.
[21] BU T, BAI F E, ZHAO S, et al.Multifunctional bacteria-derived tags for advancing immunoassay analytical performance with dual-channel switching and antibodies bioactivity sustaining[J].Biosensors and Bioelectronics, 2021, 192:113538.
[22] 赵赟,蔡伊娜,张存政,等.基于比色和荧光双信号检测戊唑醇的免疫层析试纸条的构建[J].食品与生物技术学报,2022,41(1):36-43.
ZHAO Y, CAI Y N, ZHANG C Z, et al.Fabrication of immunochromatography strip for tebuconazole based on colorimetric and fluorescent dual-signal detection[J].Journal of Food Science and Biotechnology, 2022, 41(1):36-43.
[23] CHEN Y, FU Q Q, XIE J, et al.Development of a high sensitivity quantum dot-based fluorescent quenching lateral flow assay for the detection of Zearalenone[J].Analytical and Bioanalytical Chemistry, 2019, 411(10):2 169-2 175.
[24] ZHAN L, GUO S Z, SONG F Y, et al.The role of nanoparticle design in determining analytical performance of lateral flow immunoassays[J].Nano Letters, 2017, 17(12):7 207-7 212.
[25] MOYANO A, SERRANO-PERTIERRA E, SALVADOR M, et al.Magnetic lateral flow immunoassays[J].Diagnostics, 2020, 10(5):288.
[26] ORLOV A V, MALKEROV J A, NOVICHIKHIN D O, et al.Express high-sensitive detection of ochratoxin A in food by a lateral flow immunoassay based on magnetic biolabels[J].Food Chemistry, 2022, 383:132427.
[27] YAN L Z, DOU L N, BU T, et al.Highly sensitive furazolidone monitoring in milk by a signal amplified lateral flow assay based on magnetite nanoparticles labeled dual-probe[J].Food Chemistry, 2018, 261:131-138.
[28] XIA S Q, YU Z B, LIU D F, et al.Developing a novel immunochromatographic test strip with gold magnetic bifunctional nanobeads (GMBN) for efficient detection of Salmonella choleraesuis in milk[J].Food Control, 2016, 59:507-512.
[29] HAO L W, CHEN J, CHEN X R, et al.A novel magneto-gold nanohybrid-enhanced lateral flow immunoassay for ultrasensitive and rapid detection of ochratoxin A in grape juice[J].Food Chemistry, 2021, 336:127710.
[30] LAI X C, ZHANG G G, ZENG L F, et al.Synthesis of PDA-mediated magnetic bimetallic nanozyme and its application in immunochromatographic assay[J].ACS Applied Materials & Interfaces, 2021, 13(1):1 413-1 423.
[31] HENDRICKSON O D, ZVEREVA E A, ZHERDEV A V, et al.Ultrasensitive lateral flow immunoassay of phycotoxin microcystin-LR in seafood based on magnetic particles and peroxidase signal amplification[J].Food Control, 2022, 133:108655.
[32] ZHENG S, WU T, LI J X, et al.Difunctional immunochromatographic assay based on magnetic quantum dot for ultrasensitive and simultaneous detection of multiple mycotoxins in foods[J].Sensors and Actuators B:Chemical, 2022, 359:131528.
[33] ZHANG T, LEI L L, TIAN M L, et al.Multifunctional Fe3O4@ Au supraparticle as a promising thermal contrast for an ultrasensitive lateral flow immunoassay[J].Talanta, 2021, 222:121478.
[34] WU T, LI J X, ZHENG S, et al.Magnetic nanotag-based colorimetric/SERS dual-readout immunochromatography for ultrasensitive detection of clenbuterol hydrochloride and ractopamine in food samples[J].Biosensors, 2022, 12(9):709.
[35] FANG B, HU S, WANG C, et al.Lateral flow immunoassays combining enrichment and colorimetry-fluorescence quantitative detection of sulfamethazine in milk based on trifunctional magnetic nanobeads[J].Food Control, 2019, 98:268-273.
[36] LIU C Y, JIA Q J, YANG C H, et al.Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents[J].Analytical Chemistry, 2011, 83(17):6 778-6 784.
[37] CALABRIA D, CALABRETTA M M, ZANGHERI M, et al.Recent advancements in enzyme-based lateral flow immunoassays[J].Sensors, 2021, 21(10):3358.
[38] WU Z Z, HE D Y, XU E B, et al.Rapid detection of β-conglutin with a novel lateral flow aptasensor assisted by immunomagnetic enrichment and enzyme signal amplification[J].Food Chemistry, 2018, 269:375-379.
[39] 山珊,黄艳梅,赵雪龙,等.级联信号转导系统结合免疫层析法检测大肠埃希氏菌O157:H7[J].食品科学,2021,42(18):314-320.
SHAN S, HUANG Y M, ZHAO X L, et al.Detection of Escherichia coli O157:H7 by cascade signal transduction system combined with immunochromatography[J].Food Science, 2021, 42(18):314-320.
[40] REN J, SU L H, HU H L, et al.Expanded detection range of lateral flow immunoassay endowed with a third-stage amplifier indirect probe[J].Food Chemistry, 2022, 377:131920.
[41] LI Y C, LIU S J, YIN X C, et al.Nature-inspired nanozymes as signal markers for in-situ signal amplification strategy:A portable dual-colorimetric immunochromatographic analysis based on smartphone[J].Biosensors and Bioelectronics, 2022,210:114289.
[42] WEI D L, ZHANG X Y, CHEN B, et al.Using bimetallic Au@ Pt nanozymes as a visual tag and as an enzyme mimic in enhanced sensitive lateral-flow immunoassays:Application for the detection of streptomycin[J].Analytica Chimica Acta, 2020, 1 126:106-113.
[43] LIU S J, DOU L N, YAO X L, et al.Nanozyme amplification mediated on-demand multiplex lateral flow immunoassay with dual-readout and broadened detection range[J].Biosensors and Bioelectronics, 2020, 169:112610.
[44] CHENG N, SONG Y, ZEINHOM M M A, et al.Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens[J].ACS Applied Materials & Interfaces, 2017, 9(46):40 671-40 680.
[45] DOU L N, BAI Y C, LIU M G, et al.‘Three-To-One’multi-functional nanocomposite-based lateral flow immunoassay for label-free and dual-readout detection of pathogenic bacteria[J].Biosensors and Bioelectronics, 2022, 204:114093.
[46] MEI J, LEUNG N L C, KWOK R T K, et al.Aggregation-induced emission:Together we shine, united we soar![J].Chemical Reviews, 2015, 115(21):11 718-11 940.
[47] LENG Y, WU W, LI L, et al.Magnetic/fluorescent barcodes based on cadmium-free near-infrared-emitting quantum dots for multiplexed detection[J].Advanced Functional Materials, 2016, 26(42):7744.
[48] CHEN R, CHEN X R, ZHOU Y F, et al.“Three-in-One” multifunctional nanohybrids with colorimetric magnetic catalytic activities to enhance immunochromatographic diagnosis[J].ACS nano, 2022, 16(2):3 351-3 361.
[49] 李辉,盈盈,曹振,等.基于智能手机拍照判读的侧流免疫层析快速检测技术研究进展[J].分析化学,2022,50(1):1-11.
LI H, YING Y, CAO Z, et al.Research progress on rapid detection technology based on smartphone and lateral flow immunoassay[J].Chinese Journal of Analytical Chemistry, 2022, 50(1):1-11.
[50] 单万水. 从层析荧光到微流控生物芯片:现场快速检验 (POCT) 技术基础概述[J].中国医疗器械信息, 2017, 23(7):45-52.
SHAN W S.From lateral flow immunoassay to microfluidic biochip:An overview of key POCT technologies[J].China Medical Device Information, 2017, 23(7):45-52.
文章导航

/