[1] 田亚晨,王淑娟,马兰,等.纳米颗粒在侧流免疫层析技术中的应用研究进展[J].食品科学,2019,40(17):348-356.
TIAN Y C, WANG S J, MA L, et al.Recent progress on nanoparticles in lateral flow immunochromatographic strip[J].Food science, 2019, 40 (17):348-356.
[2] SU L H, HU H L, TIAN Y L, et al.Highly sensitive colorimetric/surface-enhanced Raman spectroscopy immunoassay relying on a metallic core-shell Au/Au nanostar with clenbuterol as a target analyte[J].Analytical Chemistry, 2021, 93(23):8 362-8 369.
[3] GUO L, SHAO Y N, DUAN H, et al.Magnetic quantum dot nanobead-based fluorescent immunochromatographic assay for the highly sensitive detection of aflatoxin B1 in dark soy sauce[J].Analytical chemistry, 2019, 91(7):4 727-4 734.
[4] CAI X F, LIANG M J, MA F, et al.Nanozyme-strip based on MnO2 nanosheets as a catalytic label for multi-scale detection of aflatoxin B1 with an ultrabroad working range[J].Food Chemistry, 2022, 377:131965.
[5] SU L H, CHEN Y Q, WANG L L, et al.Dual-signal based immunoassay for colorimetric and photothermal detection of furazolidone[J].Sensors and Actuators B:Chemical, 2021, 331:129431.
[6] HUANG Z, XIONG Z J, CHEN Y, et al.Sensitive and matrix-tolerant lateral flow immunoassay based on fluorescent magnetic nanobeads for the detection of clenbuterol in swine urine[J].Journal of agricultural and food chemistry, 2019, 67(10):3 028-3 036.
[7] ZHANG M, BU T, TIAN Y, et al.Fe3O4@ CuS-based immunochromatographic test strips and their application to label-free and dual-readout detection of Escherichia coli O157:H7 in food[J].Food Chemistry, 2020, 332:127398.
[8] ZHOU Y F, HUANG X L, HU X Y, et al.Recent advances in colorimetry/fluorimetry-based dual-modal sensing technologies[J].Biosensors and Bioelectronics, 2021, 190:113386.
[9] BU T, BAI F E, ZHAO S, et al.Dual-modal immunochromatographic test for sensitive detection of zearalenone in food samples based on biosynthetic Staphylococcus aureus-mediated polymer dot nanocomposites[J].Analytical Chemistry, 2022, 94 (14):5 546-5 554.
[10] WANG S, SHEN W Z, ZHENG S, et al.Dual-signal lateral flow assay using vancomycin-modified nanotags for rapid and sensitive detection of Staphylococcus aureus[J].RSC Advances, 2021, 11(22):13 297-13 303.
[11] HE K Y, BU T, ZHENG X H, et al.“Lighting-up” methylene blue-embedded zirconium based organic framework triggered by Al3+ for advancing the sensitivity of E.coli O157∶H7 analysis in dual-signal lateral flow immunochromatographic assay[J].Journal of Hazardous Materials, 2022, 425:128034.
[12] WANG Z X, XING K Y, DING N S, et al.Lateral flow immunoassay based on dual spectral-overlapped fluorescence quenching of polydopamine nanospheres for sensitive detection of sulfamethazine[J].Journal of Hazardous Materials, 2022, 423:127204.
[13] SHIRSHAHI V, TABATABAEI S N, HATAMIE S, et al.Photothermal enhancement in sensitivity of lateral flow assays for detection of E.coli O157:H7[J].Colloids and Surfaces B:Biointerfaces, 2020, 186:110721.
[14] ZHANG M, BU T, BAI F E, et al.Gold nanoparticles-functionalized three-dimensional flower-like manganese dioxide:A high-sensitivity thermal analysis immunochromatographic sensor[J].Food Chemistry, 2021, 341:128231.
[15] LIN L K, STANCIU L A.Bisphenol A detection using gold nanostars in a SERS improved lateral flow immunochromatographic assay[J].Sensors and Actuators B:Chemical, 2018, 276:222-229.
[16] ZHENG S, WANG C G, LI J X, et al.Graphene oxide-based three-dimensional Au nanofilm with high-density and controllable hotspots:A powerful film-type SERS tag for immunochromatographic analysis of multiple mycotoxins in complex samples[J].Chemical Engineering Journal, 2022, 448:137760.
[17] HE D Y, WU Z E, CUI B, et al.Establishment of a dual mode immunochromatographic assay for Campylobacter jejuni detection[J].Food Chemistry, 2019, 289:708-713.
[18] WANG W W, OUYANG H.Luminol-reduced Au nanoparticles-based dual-signal immunochromatographic test strip for pesticide residues[J].Microchemical Journal, 2019, 149:104055.
[19] JIANG S, ZHANG L X, LI J Z, et al.Pressure/colorimetric dual-readout immunochromatographic test strip for point-of-care testing of aflatoxin B1[J].Talanta, 2021, 227:122203.
[20] ZHANG X Y, DING M Y, MAO Y X, et al.A comparative study of “turn-off” mode and “turn-on” mode lateral flow immunoassay for T-2 toxin detection[J].Sensors and Actuators B:Chemical, 2022, 359:131545.
[21] BU T, BAI F E, ZHAO S, et al.Multifunctional bacteria-derived tags for advancing immunoassay analytical performance with dual-channel switching and antibodies bioactivity sustaining[J].Biosensors and Bioelectronics, 2021, 192:113538.
[22] 赵赟,蔡伊娜,张存政,等.基于比色和荧光双信号检测戊唑醇的免疫层析试纸条的构建[J].食品与生物技术学报,2022,41(1):36-43.
ZHAO Y, CAI Y N, ZHANG C Z, et al.Fabrication of immunochromatography strip for tebuconazole based on colorimetric and fluorescent dual-signal detection[J].Journal of Food Science and Biotechnology, 2022, 41(1):36-43.
[23] CHEN Y, FU Q Q, XIE J, et al.Development of a high sensitivity quantum dot-based fluorescent quenching lateral flow assay for the detection of Zearalenone[J].Analytical and Bioanalytical Chemistry, 2019, 411(10):2 169-2 175.
[24] ZHAN L, GUO S Z, SONG F Y, et al.The role of nanoparticle design in determining analytical performance of lateral flow immunoassays[J].Nano Letters, 2017, 17(12):7 207-7 212.
[25] MOYANO A, SERRANO-PERTIERRA E, SALVADOR M, et al.Magnetic lateral flow immunoassays[J].Diagnostics, 2020, 10(5):288.
[26] ORLOV A V, MALKEROV J A, NOVICHIKHIN D O, et al.Express high-sensitive detection of ochratoxin A in food by a lateral flow immunoassay based on magnetic biolabels[J].Food Chemistry, 2022, 383:132427.
[27] YAN L Z, DOU L N, BU T, et al.Highly sensitive furazolidone monitoring in milk by a signal amplified lateral flow assay based on magnetite nanoparticles labeled dual-probe[J].Food Chemistry, 2018, 261:131-138.
[28] XIA S Q, YU Z B, LIU D F, et al.Developing a novel immunochromatographic test strip with gold magnetic bifunctional nanobeads (GMBN) for efficient detection of Salmonella choleraesuis in milk[J].Food Control, 2016, 59:507-512.
[29] HAO L W, CHEN J, CHEN X R, et al.A novel magneto-gold nanohybrid-enhanced lateral flow immunoassay for ultrasensitive and rapid detection of ochratoxin A in grape juice[J].Food Chemistry, 2021, 336:127710.
[30] LAI X C, ZHANG G G, ZENG L F, et al.Synthesis of PDA-mediated magnetic bimetallic nanozyme and its application in immunochromatographic assay[J].ACS Applied Materials & Interfaces, 2021, 13(1):1 413-1 423.
[31] HENDRICKSON O D, ZVEREVA E A, ZHERDEV A V, et al.Ultrasensitive lateral flow immunoassay of phycotoxin microcystin-LR in seafood based on magnetic particles and peroxidase signal amplification[J].Food Control, 2022, 133:108655.
[32] ZHENG S, WU T, LI J X, et al.Difunctional immunochromatographic assay based on magnetic quantum dot for ultrasensitive and simultaneous detection of multiple mycotoxins in foods[J].Sensors and Actuators B:Chemical, 2022, 359:131528.
[33] ZHANG T, LEI L L, TIAN M L, et al.Multifunctional Fe3O4@ Au supraparticle as a promising thermal contrast for an ultrasensitive lateral flow immunoassay[J].Talanta, 2021, 222:121478.
[34] WU T, LI J X, ZHENG S, et al.Magnetic nanotag-based colorimetric/SERS dual-readout immunochromatography for ultrasensitive detection of clenbuterol hydrochloride and ractopamine in food samples[J].Biosensors, 2022, 12(9):709.
[35] FANG B, HU S, WANG C, et al.Lateral flow immunoassays combining enrichment and colorimetry-fluorescence quantitative detection of sulfamethazine in milk based on trifunctional magnetic nanobeads[J].Food Control, 2019, 98:268-273.
[36] LIU C Y, JIA Q J, YANG C H, et al.Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents[J].Analytical Chemistry, 2011, 83(17):6 778-6 784.
[37] CALABRIA D, CALABRETTA M M, ZANGHERI M, et al.Recent advancements in enzyme-based lateral flow immunoassays[J].Sensors, 2021, 21(10):3358.
[38] WU Z Z, HE D Y, XU E B, et al.Rapid detection of β-conglutin with a novel lateral flow aptasensor assisted by immunomagnetic enrichment and enzyme signal amplification[J].Food Chemistry, 2018, 269:375-379.
[39] 山珊,黄艳梅,赵雪龙,等.级联信号转导系统结合免疫层析法检测大肠埃希氏菌O157:H7[J].食品科学,2021,42(18):314-320.
SHAN S, HUANG Y M, ZHAO X L, et al.Detection of Escherichia coli O157:H7 by cascade signal transduction system combined with immunochromatography[J].Food Science, 2021, 42(18):314-320.
[40] REN J, SU L H, HU H L, et al.Expanded detection range of lateral flow immunoassay endowed with a third-stage amplifier indirect probe[J].Food Chemistry, 2022, 377:131920.
[41] LI Y C, LIU S J, YIN X C, et al.Nature-inspired nanozymes as signal markers for in-situ signal amplification strategy:A portable dual-colorimetric immunochromatographic analysis based on smartphone[J].Biosensors and Bioelectronics, 2022,210:114289.
[42] WEI D L, ZHANG X Y, CHEN B, et al.Using bimetallic Au@ Pt nanozymes as a visual tag and as an enzyme mimic in enhanced sensitive lateral-flow immunoassays:Application for the detection of streptomycin[J].Analytica Chimica Acta, 2020, 1 126:106-113.
[43] LIU S J, DOU L N, YAO X L, et al.Nanozyme amplification mediated on-demand multiplex lateral flow immunoassay with dual-readout and broadened detection range[J].Biosensors and Bioelectronics, 2020, 169:112610.
[44] CHENG N, SONG Y, ZEINHOM M M A, et al.Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens[J].ACS Applied Materials & Interfaces, 2017, 9(46):40 671-40 680.
[45] DOU L N, BAI Y C, LIU M G, et al.‘Three-To-One’multi-functional nanocomposite-based lateral flow immunoassay for label-free and dual-readout detection of pathogenic bacteria[J].Biosensors and Bioelectronics, 2022, 204:114093.
[46] MEI J, LEUNG N L C, KWOK R T K, et al.Aggregation-induced emission:Together we shine, united we soar![J].Chemical Reviews, 2015, 115(21):11 718-11 940.
[47] LENG Y, WU W, LI L, et al.Magnetic/fluorescent barcodes based on cadmium-free near-infrared-emitting quantum dots for multiplexed detection[J].Advanced Functional Materials, 2016, 26(42):7744.
[48] CHEN R, CHEN X R, ZHOU Y F, et al.“Three-in-One” multifunctional nanohybrids with colorimetric magnetic catalytic activities to enhance immunochromatographic diagnosis[J].ACS nano, 2022, 16(2):3 351-3 361.
[49] 李辉,盈盈,曹振,等.基于智能手机拍照判读的侧流免疫层析快速检测技术研究进展[J].分析化学,2022,50(1):1-11.
LI H, YING Y, CAO Z, et al.Research progress on rapid detection technology based on smartphone and lateral flow immunoassay[J].Chinese Journal of Analytical Chemistry, 2022, 50(1):1-11.
[50] 单万水. 从层析荧光到微流控生物芯片:现场快速检验 (POCT) 技术基础概述[J].中国医疗器械信息, 2017, 23(7):45-52.
SHAN W S.From lateral flow immunoassay to microfluidic biochip:An overview of key POCT technologies[J].China Medical Device Information, 2017, 23(7):45-52.