研究报告

马克斯克鲁维酵母发酵苹果酒的化学成分与抗氧化活性

  • 兰青 ,
  • 张志勇 ,
  • 余垚 ,
  • 周峻岗 ,
  • 吕红
展开
  • 1(复旦大学 生命科学学院,遗传工程国家重点实验室,上海,200438)
    2(复旦大学 上海工业菌株工程技术研究中心,上海,200438)
博士研究生(周峻岗高级工程师为通信作者,E-mail: zhoujg@fudan.edu.cn)

收稿日期: 2022-06-10

  修回日期: 2022-06-22

  网络出版日期: 2023-04-28

基金资助

上海市“科技创新行动计划”项目(21015800400,19395800600)

Chemical composition and antioxidant activities of apple cider fermented with non-Saccharomyces yeast Kluyveromyces marxianus

  • LAN Qing ,
  • ZHANG Zhiyong ,
  • YU Yao ,
  • ZHOU Jungang ,
  • LYU Hong
Expand
  • 1(State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China)
    2(Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China)

Received date: 2022-06-10

  Revised date: 2022-06-22

  Online published: 2023-04-28

摘要

近年来,由于非酿酒酵母属酵母发酵能够产生更多的风味物质,备受酿酒师的青睐。马克斯克鲁维酵母(Kluyveromyces marxianus)是一种食品安全级的非常规酵母,可用于生产生物酶、木糖醇和芳香化合物等。该研究以Saccharomyces bayanus SAF作为对照,通过发酵苹果酒的化学成分和抗氧化活性对比分析,研究了K.marxianus酿造苹果酒的特征。在25~35 ℃条件下,K.marxianus能够在96 h内完成乙醇发酵,产量约56.8 g/L。顶空固相微萃取-气相色谱-质谱(head space-solid phase micro-extraction gas chromatography-mass spectrometry,HS-SPME-GC-MS)分析结果表明,K.marxianus发酵产生的乙酸-3-甲基-1-丁酯、辛酸乙酯、己酸乙酯等酯类物质的均高于S.bayanus。2种苹果酒液相色谱-质谱联用仪(liquid chromatograph mass spectrometer,LC-MS)分析鉴定出41种抗氧化成分,其中K.marxianus苹果酒的总多酚含量比SAF苹果酒高出约17.5%。

本文引用格式

兰青 , 张志勇 , 余垚 , 周峻岗 , 吕红 . 马克斯克鲁维酵母发酵苹果酒的化学成分与抗氧化活性[J]. 食品与发酵工业, 2023 , 49(7) : 80 -89 . DOI: 10.13995/j.cnki.11-1802/ts.032634

Abstract

Non-Saccharomyces yeasts recently become promising winemakers due to the abilities to bring more varieties flavors. Kluyveromyces marxianus is a GRAS non-Saccharomyces yeast that had been used for productions of enzymes, xylitol, and aroma compounds. Using the Saccharomyces bayanus as a comparison, the ability of K. marxianus in cidermaking was evaluated and the chemical compositions and antioxidant activities of cider were analyzed. Alcoholic fermentation with K. marxianus could be accomplished before 96 h over the temperatures ranging from 25 to35 ℃, with approximately 56.8 g/L ethanol yield. Head space-solid phase micro exaction-gas chromatography-mass spectrometry revealed that K. marxianus produced more contents of esters than S. bayanus during cidermaking, such as 1-butanol-3-methyl-acetate, octanoic acid ethyl ester, and hexanoic acid ethyl ester. Liquid chromatography-mass spectrometry analyses identified 41 antioxidant components in both ciders, and the total polyphenols in the K. marxianus Fim-1 cider were 17.5% higher than that of the S. bayanus cider.

参考文献

[1] AICV.AICV Cider Trends 2021[EB/OL].[2022-6-10] .https://aicv.org/files/attachments/.453/AICV_Cider_Trends_2021.pdf.
[2] PADILLA B, GIL J V, MANZANARES P.Past and future of non-Saccharomyces yeasts:From spoilage microorganisms to biotechnological tools for improving wine aroma complexity[J].Frontiers in Microbiology, 2016, 7:411.
[3] DE ARRUDA MOURA PIETROWSKI G, ELEUTÉRIO DOS SANTOS C M, SAUER E, et al.Influence of fermentation with Hanseniaspora sp.yeast on the volatile profile of fermented apple[J].Journal of Agricultural and Food Chemistry, 2012, 60(39):9 815-9 821.
[4] BENITO Á, CALDERÓN F, PALOMERO F, et al.Combine use of selected Schizosaccharomyces pombe and Lachancea thermotolerans yeast strains as an alternative to the traditional malolactic fermentation in red wine production[J].Molecules (Basel, Switzerland), 2015, 20(6):9 510-9 523.
[5] YE M Q, YUE T L, YUAN Y H.Effects of sequential mixed cultures of Wickerhamomyces anomalus and Saccharomyces cerevisiae on apple cider fermentation[J].FEMS Yeast Research, 2014, 14(6):873-882.
[6] QIAN X J, YAN W, ZHANG W M, et al.Current status and perspectives of 2-phenylethanol production through biological processes[J].Critical Reviews in Biotechnology, 2019, 39(2):235-248.
[7] SIEIRO C, VILLA T G, DA SILVA A F, et al.Albariño wine aroma enhancement through the use of a recombinant polygalacturonase from Kluyveromyces marxianus[J].Food Chemistry, 2014, 145:179-185.
[8] PIEMOLINI-BARRETO L T, ZACARIA J, DELAMARE A P L, et al.Variation in phenolic compounds, anthocyanins, and color in red wine treated with enzymatic extract of Kluyveromyces marxianus[J].World Journal of Microbiology and Biotechnology, 2014, 30(5):1 541-1 547.
[9] KARIM A, GERLIANI N, AÏDER M.Kluyveromyces marxianus:An emerging yeast cell factory for applications in food and biotechnology[J].International Journal of Food Microbiology, 2020, 333:108818.
[10] NAUMOV G I, NGUYEN H V, NAUMOVA E S, et al.Genetic identification of Saccharomyces bayanus var.uvarum, a cider-fermenting yeast[J].International Journal of Food Microbiology, 2001, 65(3):163-171.
[11] BAJPAI P, MARGARITIS A.The effect of temperature and pH on ethanol production by free and immobilized cells of Kluyveromyces marxianus grown on Jerusalem artichoke extract[J].Biotechnology and Bioengineering, 1987, 30(2):306-313.
[12] BELDA I, CONCHILLO L B, RUIZ J, et al.Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking[J].International Journal of Food Microbiology, 2016, 223:1-8.
[13] DIVOL B, VAN RENSBURG P.PGU1 gene natural deletion is responsible for the absence of endo-polygalacturonase activity in some wine strains of Saccharomyces cerevisiae[J].FEMS Yeast Research, 2007, 7(8):1 328-1 339.
[14] SONG H P, SHIM S L, LEE S I, et al.Analysis of volatile organic compounds of ‘Fuji’ apples following electron beam irradiation and storage[J].Radiation Physics and Chemistry, 2012, 81(8):1 084-1 087.
[15] QIN L, WEI Q P, KANG W H, et al.Comparison of volatile compounds in ‘fuji’ apples in the different regions in China[J].Food Science and Technology Research, 2017, 23(1):79-89.
[16] DONADEL J Z, THEWES F R, DE OLIVEIRA ANESE R, et al.Key volatile compounds of ‘Fuji Kiku’ apples as affected by the storage conditions and shelf life:Correlation between volatile emission by intact fruit and juice extracted from the fruit[J].Food Research International, 2019, 125:108625.
[17] GUO J, YUE T L, YUAN Y H, et al.Characterization of volatile and sensory profiles of apple juices to trace fruit origins and investigation of the relationship between the aroma properties and volatile constituents[J].LWT, 2020, 124:109203.
[18] ZHOU Z W, WU Q Y, YAO Z L, et al.Dynamics of ADH and related genes responsible for the transformation of C6-aldehydes to C6-alcohols during the postharvest process of oolong tea[J].Food Science & Nutrition, 2020, 8(1):104-113.
[19] LIN J, MASSONNET M, CANTU D.The genetic basis of grape and wine aroma[J].Horticulture Research, 2019, 6:81.
[20] HARSCH M J, BENKWITZ F, FROST A, et al.New precursor of 3-mercaptohexan-1-ol in grape juice:Thiol-forming potential and kinetics during early stages of must fermentation[J].Journal of Agricultural and Food Chemistry, 2013, 61(15):3 703-3 713.
[21] SINGLA R K, DUBEY A K, GARG A, et al.Natural polyphenols:Chemical classification, definition of classes, subcategories, and structures[J].Journal of AOAC INTERNATIONAL, 2019, 102(5):1 397-1 400.
[22] LI X C.2-phenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO·) radical scavenging:A new and simple antioxidant assay in vitro[J].Journal of Agricultural and Food Chemistry, 2017, 65(30):6 288-6 297.
[23] HOLDERBAUM D F, KON T, KUDO T, et al.Enzymatic browning, polyphenol oxidase activity, and polyphenols in four apple cultivars:Dynamics during fruit development[J].HortScience, 2010, 45(8):1 150-1 154.
[24] FU X F, LI P S, ZHANG L, et al.Understanding the stress responses of Kluyveromyces marxianus after an arrest during high-temperature ethanol fermentation based on integration of RNA-Seq and metabolite data[J].Applied Microbiology and Biotechnology, 2019, 103(6):2 715-2 729.
[25] DAVIDSON J F, WHYTE B, BISSINGER P H, et al.Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae[J].Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(10):5 116-5 121.
文章导航

/