研究报告

不同干燥方式对降糖山楂条干燥特性及品质影响研究

  • 栗丽 ,
  • 王博 ,
  • 王玉川 ,
  • 刘继光
展开
  • 1(江南大学 食品学院,江苏 无锡,214122)
    2(江苏大学 食品与生物工程学院,江苏 镇江,212013)
    3(山东公社联盟食品有限公司,山东 临沂,276034)
硕士研究生(王玉川副教授为通信作者,E-mail:wyc453@163.com)

收稿日期: 2022-03-30

  修回日期: 2022-06-06

  网络出版日期: 2023-07-13

基金资助

国家重点研发计划(2018YFD0400801);国家自然科学基金资助项目(31801537)

Effects of different drying methods on drying characteristics and quality of sugar-reduced hawthorn stick

  • LI Li ,
  • WANG Bo ,
  • WANG Yuchuan ,
  • LIU Jiguang
Expand
  • 1(School of Food Science and Technology, Jiangnan university, Wuxi 214122, China)
    2(School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China)
    3(Shandong Commune Union Food Co.Ltd., Linyi 276034, China)

Received date: 2022-03-30

  Revised date: 2022-06-06

  Online published: 2023-07-13

摘要

该研究针对传统山楂条产品加工存在糖含量高、干燥周期长及品质低等问题,采用脱水促凝的方法进行了降糖山楂条工艺研究,分析了热风干燥、中短波红外干燥、射频干燥和真空干燥4种干燥方式对降糖山楂条干燥特性及品质属性的影响,并与传统山楂条(无降糖)进行对比。结果表明,与传统山楂条干燥时间相比(72 h),4种干燥方式降糖山楂条干燥时间明显缩短,射频干燥时间最短(32 h),其次是红外干燥(40 h)、真空干燥(52 h),热风干燥时间最长(64 h);降糖后山楂条总糖含量减少了4.51%,黄酮含量由16.76 mg/g提高到21.55 mg/g,多酚含量由19.48 mg/g提高到25.58 mg/g,抗氧化能力与风味增强;在硬度、弹性、咀嚼性方面,真空干燥山楂条最低,射频干燥山楂条最高;在抗氧化能力方面,真空干燥山楂条最高,热风干燥山楂条最低;在干燥均匀性及感官评价方面,红外干燥山楂条表现最优。综合对比品质与干燥时间,中短波红外干燥技术比较适合用于山楂条降糖与品质提升高效干燥加工。

本文引用格式

栗丽 , 王博 , 王玉川 , 刘继光 . 不同干燥方式对降糖山楂条干燥特性及品质影响研究[J]. 食品与发酵工业, 2023 , 49(12) : 10 -16 . DOI: 10.13995/j.cnki.11-1802/ts.031703

Abstract

Conventional hawthorn stick processing technologies have disadvantages such as a long drying cycle, high sugar content, and low quality.This study used the dehydration and coagulation-promoting method to produce sugar-reduced hawthorn sticks.The drying characteristics and quality attributes of the sugar-reduced hawthorn stick dried by hot-air drying (AD), mid-infrared drying (MIRD), radio frequency drying (RFD), and vacuum drying (VD) were measured, and compared with the conventional hawthorn stick (without sugar-reduction).Results showed that compared with conventional hawthorn stick drying technology (drying time was 72 h), the drying time of sugar-reduced hawthorn stick dried by four drying methods was significantly shortened.Among the four drying methods, the drying time of RFD was the shortest (32 h), followed by MIRD (40 h), VD (52 h), and AD (64 h).After sugar reduction, the total sugar content of hawthorn sticks was reduced by 4.51%.Flavonoid content increased from 16.76 mg/g to 21.55 mg/g.Polyphenols content increased from 19.48 mg/g to 25.58 mg/g.Antioxidant capacity and flavor enhanced.In terms of hardness, resilience, and chewiness, the VD hawthorn stick was the lowest and RFD hawthorn stick was the highest.In terms of antioxidant capacity, the VD hawthorn stick was the highest and the AD hawthorn stick was the lowest.In terms of temperature uniformity and sensory evaluation, the MIRD hawthorn stick was the best.By comprehensively comparing the quality and drying time, MIRD was suitable for the high-efficiency drying of hawthorn sticks, which reduced sugar and improved quality.

参考文献

[1] WEI Z Q, AI L, CHEN X, et al.Comparative studies on the regulatory effects of raw and charred hawthorn on functional dyspepsia and intestinal flora[J].Tropical Journal of Pharmaceutical Research, 2019, 18(2):333-339.
[2] 王广峰. 阿胶红枣黄芪山楂糕制作复合裱花蛋糕研究[J].食品研究与开发, 2014, 35(14):62-65.
WANG G F.Donkey hide gelatin jujube Astragalus haw jelly research making decorated cake[J].Food Research and Development, 2014, 35(14):62-65.
[3] LI L, GAO X L, LIU J G, et al.Hawthorn pectin:Extraction, function and utilization[J].Current Research in Food Science,2021, 4:429-435.
[4] 赵晋府. 食品工艺学[M].第二版.北京:中国轻工业出版社, 1999.
ZHAO J F.Food Technology[M].2th ed.Beijing:China Light Industry Press, 1999.
[5] BHANDARI B.Handbook of industrial drying, fourth edition edited by A.S.mujumdar[J].Drying Technology, 2015, 33(1):128-129.
[6] VAN DER SLUIS A A, DEKKER M, SKREDE G, et al.Activity and concentration of polyphenolic antioxidants in apple juice.1.Effect of novel production methods[J].Journal of Agricultural and Food Chemistry, 2004, 52(10):2 840-2 848.
[7] NOWACKA M,FIJALKOWSKA A,DADAN M, et al.Effect of ultrasound treatment during osmotic dehydration on bioactive compounds of cranberries[J].Ultrasonics, 2018, 83:18-25.
[8] PAZ M, GÚLLON P, BARROSO M F, et al.Brazilian fruit pulps as functional foods and additives:Evaluation of bioactive compounds[J].Food Chemistry, 2015, 172:462-468.
[9] GIUSTI M M, WROLSTAD R E.Characterization and measurement of anthocyanins by UV-visible spectroscopy[J].Current Protocols in Food Analytical Chemistry, 2001(1):F1.2.1-F1.2.13.
[10] AMAMI E, KHEZAMI W, MEZRIGUI S, et al.Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry[J].Ultrasonics-Sonochemistry, 2017, 36:286-300.
[11] KOOLEN H H F, DA SILVA F M A, GOZZO F C, et al.Antioxidant, antimicrobial activities and characterization of phenolic compounds from buriti (Mauritia flexuosa L.f.) by UPLC-ESI-MS/MS[J].Food Research International, 2013, 51(2):467-473.
[12] LAO Y Y, ZHANG M, DEVAHASTIN S, et al.Effect of combined infrared freeze drying and microwave vacuum drying on quality of kale yoghurt melts[J].Drying Technology, 2020, 38(5-6):621-633.
[13] 王莹. 地黄叶浸膏和赤芍浸膏干燥工艺研究[D].杭州:浙江大学, 2014.
WANG Y.Study on drying technology of Rehmannia glutinosa leaf extract and Paeonia lactiflora extract[D].Hangzhou:Zhejiang University, 2014.
[14] MOTEVALI A, MINAEI S, KHOSHTAGHAZA M H, et al.Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices[J].Energy, 2011, 36(11):6 433-6 441.
[15] 王洪彩. 香菇中短波红外干燥及其联合干燥研究[D].无锡:江南大学, 2014.
WANG H C.Study on short-wave infrared drying and combined drying of Lentinus edodes[D].Wuxi:Jiangnan University, 2014.
[16] 巨浩羽, 赵士豪, 赵海燕, 等.中草药干燥加工现状及发展趋势[J].南京中医药大学学报, 2021, 37(5):786-796.
JU H Y, ZHAO S H, ZHAO H Y, et al.Present situation and developing trend on drying of Chinese herbs[J].Journal of Nanjing University of Traditional Chinese Medicine, 2021, 37(5):786-796.
[17] XU B G, ZHANG M, BHANDARI B.Temperature and quality characteristics of infrared radiation-dried kelp at different peak wavelengths[J].Drying Technology, 2014, 32(4):437-446.
[18] 潘晓倩, 成晓瑜, 张顺亮, 等.不同发酵剂对北方风干香肠色泽和风味品质的改良作用[J].食品科学, 2015, 36(14):81-86.
PAN X Q, CHENG X Y, ZHANG S L, et al.Analysis of color and flavor improvement of different starter cultures on Northern air-dried sausage[J].Food Science, 2015, 36(14):81-86.
[19] 何树珍. 低血糖指数蔗糖共结晶产品的制备和功效研究[D].广州:华南理工大学, 2012.
HE S Z.Study on preparation and efficacy of sucrose cocrystallization with low glycemic index[D].Guangzhou:South China University of Technology, 2012.
[20] 徐飞, 李宝安, 钮福祥, 等.山楂-紫薯复合系列产品开发[J].现代农业科技, 2018(13):258-259;262.
XU F, LI B A, NIU F X, et al.Development of hawthorn-purple potato composite series products[J].Modern Agricultural Science and Technology, 2018(13):258-259;262.
[21] 胡庆国. 毛豆热风与真空微波联合干燥过程研究[D].无锡:江南大学, 2006.
HU Q G.Study on combined drying process of hot air and vacuum microwave for edamame[D].Wuxi:Jiangnan University, 2006.
[22] WANG H C, ZHANG M, MUJUMDAR A S.Comparison of three new drying methods for drying characteristics and quality of shiitake mushroom (Lentinus edodes)[J].Drying Technology, 2014, 32(15):1 791-1 802.
[23] KARAMAN S, TOKER O S, ÇAM M, et al.Bioactive and physicochemical properties of persimmon as affected by drying methods[J].Drying Technology, 2014, 32(3):258-267.
[24] CHAUHAN A, SINGH S, DHAR A, et al.Optimization of pineapple drying based on energy consumption, nutrient retention, and drying time through multi-criteria decision-making[J].Journal of Cleaner Production, 2021, 292:125913.
[25] CHEN D D, XING B C, YI H J, et al.Effects of different drying methods on appearance, microstructure, bioactive compounds and aroma compounds of saffron (Crocus sativus L.)[J].LWT, 2020, 120:108913.
文章导航

/