研究报告

重组地衣芽孢杆菌全细胞转化产(R)-柠苹酸的研究

  • 沈佳颖 ,
  • 李由然 ,
  • 石贵阳
展开
  • 1(江南大学,粮食发酵与食品生物制造国家工程研究中心,江苏 无锡,214122)
    2(江南大学 生物工程学院,江苏 无锡,214122)
硕士研究生(石贵阳教授为通信作者,E-mail:gyshi@jiangnan.edu.cn)

收稿日期: 2022-08-17

  修回日期: 2022-09-15

  网络出版日期: 2023-08-30

基金资助

国家重点研发计划项目(2020YFA0907704);国家自然科学基金项目(32172174)

Whole-cell biosynthesis of (R)-citramalate by recombinant Bacillus licheniformis

  • SHEN Jiaying ,
  • LI Youran ,
  • SHI Guiyang
Expand
  • 1(National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China)
    2(School of Biotechnology, Jiangnan University, Wuxi 214122, China)

Received date: 2022-08-17

  Revised date: 2022-09-15

  Online published: 2023-08-30

摘要

(R)-柠苹酸作为重要聚合物中间体甲基丙烯酸(methacrylic acid,MAA)的化学合成前体,在食品加工、医疗、建筑、照明和家电等领域有着重大的应用前景。(R)-柠苹酸目前主要通过化学法生产,其生物法合成技术仍处于研究阶段。该研究首次在地衣芽孢杆菌中引入异源柠苹酸合酶搭建了(R)-柠苹酸合成途径,以葡萄糖为底物实现了(R)-柠苹酸的合成与积累。进一步建立及优化了重组菌株进行全细胞转化产(R)-柠苹酸的条件,发现温度和时间可以显著影响(R)-柠苹酸的产量。最终,采用CMC培养基制备全细胞催化剂,在37 ℃、pH 7.0、底物质量浓度为100 g/L、菌体浓度OD600值为70、摇床转速为250 r/min的条件下转化120 h后,生成(R)-柠苹酸8.57 g/L,转化率为142.84 mg/g葡萄糖,是目前报道的摇瓶培养合成(R)-柠苹酸的最高水平,为生物法高效合成(R)-柠苹酸的进一步研究提供了参考。

本文引用格式

沈佳颖 , 李由然 , 石贵阳 . 重组地衣芽孢杆菌全细胞转化产(R)-柠苹酸的研究[J]. 食品与发酵工业, 2023 , 49(14) : 9 -15 . DOI: 10.13995/j.cnki.11-1802/ts.033358

Abstract

The (R)-citramalate is a chemical precursor for synthesis of methacrylic acid (MAA), which is used in food processing, medical device, construction, lighting, and the home appliance industries. At present, (R)-citramalate is mainly produced by chemical method, and its biological synthesis technology is still in the research stage. In this study, Bacillus licheniformis was used as the chassis cell to successfully construct the (R)-citramalate production pathway for the first time, the heterologous expression of citramalate synthase was realized in the recombinant B. licheniformis and the glucose was used as the substrate to achieve the synthesis and accumulation of (R)-citramalate. Subsequently, the conditions for whole-cell biocatalysis were optimized. It was found that temperature and time could significantly affect the yield of (R)-citramalate. Finally, whole-cell catalysts were prepared in CMC medium, the yield of (R)-citramalate was achieved at 8.57 g/L and the conversion rate of it achieved at 142.84 mg/g glucose after a reaction time of 120 h, by controlling the transformation condition at a pH of 7.0, temperature of 37 ℃, rotation speed of 250 r/min, substrate concentration of 100 g/L and OD600 of 70. To the best of our knowledge, the titer of (R)-citramalate is the highest reported to date in shake flask culture, which provided a reference for further research on efficient biosynthesis of (R)-citramalate.

参考文献

[1] HOWELL D M, XU H M, WHITE R H.(R)-citramalate synthase in methanogenic archaea[J].Journal of Bacteriology, 1999, 181(1):331-333.
[2] BUCKEL W, BARKER H A.Two pathways of glutamate fermentation by anaerobic bacteria[J].Journal of Bacteriology, 1974, 117(3):1 248-1 260.
[3] FENG X Y, TANG K H, BLANKENSHIP R E, et al.Metabolic flux analysis of the mixotrophic metabolisms in the green sulfur bacterium Chlorobaculum tepidum[J].Journal of Biological Chemistry, 2010, 285(50):39 544-39 550.
[4] RISSO C, VAN DIEN S J, ORLOFF A, et al.Elucidation of an alternate isoleucine biosynthesis pathway in Geobacter sulfurreducens[J].Journal of Bacteriology, 2008, 190(7):2 266-2 274.
[5] WU X H, EITEMAN M A.Production of citramalate by metabolically engineered Escherichia coli[J].Biotechnology and Bioengineering, 2016, 113(12):2 670-2 675.
[6] ZHANG K C, WOODRUFF A P, XIONG M Y, et al.A synthetic metabolic pathway for production of the platform chemical isobutyric acid[J].ChemSusChem, 2011, 4(8):1 068-1 070.
[7] BAUER W.Methacrylic Acid and Derivatives Ullmann’s Encyclopedia of Industrial Chemistry[M].Weinheim:Wiley-VCH, 2000.
[8] SALKIND M, RIDDLE E H, KEEFER R W.Acrylates and methacrylates-raw materials, intermediates, and plant integration[J].Industrial & Engineering Chemistry Research, 1959, 51(10):1 232-1 238.
[9] CARLSSON M, HABENICHT C, KAM L C, et al.Study of the sequential conversion of citric to itaconic to methacrylic acid in near-critical and supercritical water[J].Industrial & Engineering Chemistry Research, 1994, 33(8):1 989-1 996.
[10] JOHNSON D W, EASTHAM G R, POLIAKOFF M, et al. Process for the production of methacrylic acid and its derivatives and polymers produced therefrom: US9174913. 2015-11-03.
[11] ARYA A S, LEE S A, EITEMAN M A.Differential sensitivities of the growth of Escherichia coli to acrylate under aerobic and anaerobic conditions and its effect on product formation[J].Biotechnology Letters, 2013, 35(11):1 839-1 843.
[12] TODD J D, CURSON A R J, SULLIVAN M J, et al.The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E.coli, and other bacteria in conferring resistance to acrylate[J].PLoS One, 2017, 7(4):e35947.
[13] 孙俊松, 陈艾, 谢雨康, 等.一种改造的大肠杆菌工程菌及其生产柠苹酸的方法:中国, CN114806987A[P].2022-07-29.
SUN J S, CHEN A, XIE Y K, et al.A kind of modified Escherichia coli engineering bacteria and method for producing citramalate:China, CN114806987A[P].2022-07-29.
[14] WEBB J P, ARNOLD S A, BAXTER S, et al.Efficient bio-production of citramalate using an engineered Escherichia coli strain[J].Microbiology, 2018, 164(2):133-141.
[15] PARIMI N S, DURIE I A, WU X H, et al.Eliminating acetate formation improves citramalate production by metabolically engineered Escherichia coli[J].Microbial Cell Factories, 2017, 16(1):114.
[16] WU X H, TOVILLA-COUTIÑO D B, EITEMAN M A.Engineered citrate synthase improves citramalic acid generation in Escherichia coli[J].Biotechnology and Bioengineering, 2020, 117(9):2 781-2 790.
[17] ATSUMI S, LIAO J C.Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli[J].Applied and Environmental Microbiology, 2008, 74(24):7 802-7 808.
[18] 朱妍萩. 枯草芽孢杆菌代谢调控及过程优化生产N-乙酰氨基葡萄糖[D].无锡:江南大学, 2015.
ZHU Y Q.Metabolic regulation and culture conditions optimization of Bacillus subtilis for N-acetylglucosamine production[D].Wuxi:Jiangnan University, 2015.
[19] WU X H, ALTMAN R, EITEMAN M A, et al.Adaptation of Escherichia coli to elevated sodium concentrations increases cation tolerance and enables greater lactic acid production[J].Applied and Environmental Microbiology, 2014, 80(9):2 880-2 888.
[20] WARNECKE T, GILL R T.Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications[J].Microbial Cell Factories, 2005, 4:25.
[21] 赵鑫馨, 李由然, 石贵阳.地衣芽孢杆菌强组成型启动子的鉴定及其表达效果验证[J].基因组学与应用生物学, 2021, 40(S4):3 566-3 575.
ZHAO X X, LI Y R, SHI G Y.Identification and application of strong constitutive promoter of Bacillus licheniformis[J].Genomics and Applied Biology, 2021, 40(S4):3 566-3 575.
[22] 张红, 林金连, 胡定行, 等.大肠杆菌高密度发酵表达4-羟基苯乙酸酯3-羟化酶及咖啡酸的高效生物合成[J].生物工程学报, 2022, 38(9):3 466-3 477.
ZHANG H, LIN J L, HU D H, et al. High-density fermentation of Escherichia coli to express 4-hydroxyphenylacetate 3-hydroxylase and efficient biosynthesis of caffeic acid. Chinese Journal of Biotechnology, 2022, 38(9):3 466-3 477.
[23] 赵林. 重组枯草芽孢杆菌全细胞转化法高效合成N-乙酰神经氨酸[D].无锡:江南大学, 2019.
ZHAO L.Efficient production of N-acetylneuraminic acid by recombinant Bacillus subtilis via whole cell catalysis[D].Wuxi:Jiangnan University, 2019.
[24] 刘翔, 李由然, 张梁, 等.地衣芽孢杆菌中木糖操纵子受葡萄糖胁迫的转录调控特性[J].应用与环境生物学报, 2019, 25(3):695-701.
LIU X, LI Y R, ZHANG L, et al.The transcriptional regulation characteristics of xylose-inducible promoter in Bacillus licheniformis[J].Chinese Journal of Applied and Environmental Biology, 2019, 25(3):695-701.
[25] 陆一鸣, 李由然, 许银彪, 等.启动子工程提高海藻糖生产用酶在地衣芽孢杆菌中的表达[J].基因组学与应用生物学, 2022, 41(8): 1 703-1 712.
LU Y M, LI Y R, XU Y B, et al.Promoter engineering improves the expression of trehalose production enzyme in Bacillus licheniformis[J].Genomics and Applied Biology, 2022, 41(8): 1 703-1 712.
[26] 李雨虹, 耿鹏, 刘建民, 等.重组枯草芽孢杆菌全细胞催化合成钙二醇的初步研究[J].食品与发酵工业, 2021, 47(12):17-22.
LI Y H, GENG P, LIU J M, et al.Whole-cell biosynthesis of 25-hydroxy vitamin D3 by recombinant Bacillus subtilis[J].Food and Fermentation Industries, 2021, 47(12):17-22.
文章导航

/