为考察液态渗透(liquid osmotic dehydration,LOD)和固态渗透(solid osmotic dehydration,SSD)浸渍过程中草莓浸渍体系内主要呈味呈色成分的变化情况,该文以蔗糖为渗透剂,对糖渍72 h过程中草莓果和渗透环境中总糖、总酸、可溶性糖、主要有机酸以及花青素含量进行了测定,并对数据进行了相关性分析。结果显示,在浸渍72 h时,SSD法草莓中总糖和总酸含量分别为32.43 g/100 g和5.38 mg/g,是LOD法草莓的1.25和2.43倍;苹果酸和柠檬酸的保留率为69.77%和65.00%,均高于LOD;而此时花青素含量为1.50 mg/100 g,保留量仅为LOD的37.50%。对过程中数据相关性分析结果显示,2种浸渍体系中,总糖和总酸含量均表现为显著负相关(P<0.01),葡萄糖和果糖含量均存在显著的正相关(P<0.01)。在SSD体系中草莓果内的蔗糖含量与葡萄糖、果糖含量显著正相关(P<0.01),并与花青素含量均呈极显著负相关性(P<0.001),而在LOD中上述指标相关性未达显著水平;相关性结果清晰地展示了不同糖浸渍体系中糖、酸、花青素在草莓果与浸渍环境中的时空分布的相似性与差异性。总之,SSD相比LOD有更高的渗糖效率,且对草莓果内的酸有更好的保留,但花青素损失量大于LOD。研究结果为草莓脯加工中糖渍工艺的改进和产品品质提升提供数据支撑。
This study aimed to study the changes in the main taste- and color-related components in the osmotic dehydration system of strawberries during liquid osmotic dehydration (LOD) and solid osmotic dehydration (SSD), which remained for 72 h. Using sucrose as the osmotic agent, total sugar, total acid, soluble sugars, free organic acids, and anthocyanin contents were determined. Moreover, correlations of the data were analyzed. Results showed that at the end of the osmotic dehydration, the total sugar and the total acid contents of SSD strawberries were 32.43 g/100 g and 5.38 mg/g, respectively, which were 1.25 and 2.43 times that of LOD strawberries. In addition, malic acid and citric acid contents of strawberries were maintained at 69.77% and 65.00% in SSD, both higher than those in LOD. However, the anthocyanin content of strawberries was 1.50 mg/100 g, and the retention was only 37.50% of LOD. Correlation analysis showed that the total sugar and total acid showed a significant negative correlation (P<0.01) and there was a significant positive correlation between glucose and fructose (P<0.01) in both two osmotic dehydration. In the SSD system, the sucrose content in strawberries was significantly positively correlated with glucose and fructose (P<0.01) and was significantly negatively correlated with anthocyanin (P<0.001). However, the correlations among the above indicators in LOD did not reach a significant level. In summary, SSD showed higher osmotic dehydration efficiency and higher retention of strawberry acid than LOD, but less anthocyanin retention. The correlation results clearly showed the similarities and differences in the temporal and spatial distribution of sugar, acid, and anthocyanin in these strawberry osmotic systems. This study provided data support for the osmotic dehydration method selection and the quality improvement of preserved strawberries.
[1] NAYAK S L, SETHI S, SHARMA R R, et al.Aqueous ozone controls decay and maintains quality attributes of strawberry (Fragaria×ananassa Duch.)[J].Journal of Food Science and Technology, 2020, 57(1):319-326.
[2] 李宇泽, 韩爱云.草莓保鲜技术的研究进展[J].农产品加工, 2021(6):88-90;93.
LI Y Z, HAN A Y.Research progress in strawberry storage preservation technology[J].Farm Products Processing, 2021(6):88-90;93.
[3] 潘莹瑛. 芒果果脯热风干燥及组合干燥对比研究[D].南宁:广西大学, 2013.
PAN Y Y.Hot air drying of mango preserved fruit and combined-drying comparative study[D].Nanning:Guangxi University, 2013.
[4] 刘艳, 唐小闲, 张巧, 等.微波渗糖加工低糖大果山楂果脯工艺研究[J].中国果菜, 2020, 40(6):52-57.
LIU Y, TANG X X, ZHANG Q, et al.Processing technology of low-sugar preserved Malus domeri(bois)chev.by microwave-assisted sugar permeation[J].China Fruit & Vegetable, 2020, 40(6):52-57.
[5] PARK K J, BIN A, PEDRO REIS BROD F.Drying of pear d'Anjou with and without osmotic dehydration[J].Journal of Food Engineering, 2003, 56(1):97-103.
[6] 程璐. 渗透脱水在果蔬加工中的研究进展[J].畜牧与饲料科学, 2010, 31(8):94-97.
CHENG L.Research advance on application of osmotic dehydration in fruit and vegetable's processing[J].Animal Husbandry and Feed Science, 2010, 31(8):94-97.
[7] KARBOUNE S, KHODAEI N. Structures, isolation and health-promoting properties of pectic polysaccharides from cell wall-rich food by-products: A source of functional ingredients[J]. Current Opinion in Food Science, 2016, 8:50-55.
[8] RAO M A, COOLEY H J.Dynamic rheological measurement of structure development in high-methoxyl pectin/fructose gels[J].Journal of Food Science, 1993, 58(4):876-879.
[9] LIU Z L, XIE L, ZIELINSKA M, et al.Pulsed vacuum drying enhances drying of blueberry by altering micro-, ultrastructure and water status and distribution[J].LWT, 2021, 142(8):111013.
[10] 蔡红梅, 田子玉.苯酚-硫酸法测定草莓中总糖含量[J].吉林农业, 2019(4):46.
CAI H M, TIAN Z Y.Determination of total sugar content in strawberry by phenol-sulfuric acid method[J].Agriculture of Jilin, 2019(4):46.
[11] 桂远方. 真空冷冻干燥草莓粉品质评价研究[D].南京:南京师范大学, 2016.
GUI Y F.Research on quality evaluation of vacuum freeze-dried strawberry powder[D].Nanjing:Nanjing Normal University, 2016.
[12] ZOU K J, TENG J W, HUANG L, et al.Effect of osmotic pretreatment on quality of mango chips by explosion puffing drying[J].LWT - Food Science and Technology, 2013, 51(1):253-259.
[13] DE OLIVEIRA M M, TRIBST A A L, DE CASTRO LEITE B R Jr, et al.Effects of high pressure processing on cocoyam, Peruvian carrot, and sweet potato:Changes in microstructure, physical characteristics, starch, and drying rate[J].Innovative Food Science & Emerging Technologies, 2015, 31:45-53.
[14] 李勤勤, 李佳慧, 马晓敏, 等.果脯渗糖工艺研究进展[J].食品工业, 2021, 42(6):362-366.
LI Q Q, LI J H, MA X M, et al.Research progress in sugar permeation technology of preserved fruits[J].The Food Industry, 2021, 42(6):362-366.
[15] ASSIS F R, MORAIS R M S C, MORAIS A M M B.Mass transfer in osmotic dehydration of food products:Comparison between mathematical models[J].Food Engineering Reviews, 2016, 8(2):116-133.
[16] İSPIR A, TOĞRUL İ T.Osmotic dehydration of apricot:Kinetics and the effect of process parameters[J].Chemical Engineering Research and Design, 2009, 87(2):166-180.
[17] 莫崧鹰. 用反渗透法分离果糖和葡萄糖[J].广州食品工业科技, 1986, 2(4):48-50.
MO S Y.Separation of fructose and glucose by reverse osmosis[J].Modern Food Science and Technology, 1986, 2(4):48-50.
[18] 高海生, 张烨.果脯蜜饯生产中容易出现的质量问题与解决方法[J].中国农村小康科技, 2000(7):33-34.
GAO H S, ZHANG Y.Quality problems and solutions in the production of preserved fruits and preserves[J].Chinese Counfryside Well-Off Technology, 2000(7):33-34.
[19] 邢英丽, 郝义, 徐凌.果脯生产中的质量问题及解决方法[J].农村实用工程技术, 1998, 18(9):30-31.
XING Y L, HAO Y, XU L.Quality problems and solutions in preserved fruit production[J].Agricultural Engineering Technology, 1998, 18(9):30-31.
[20] 胡丽菊, 孟宪军, 孙希云, 等.不同预处理方式对冻藏草莓品质的影响[J].食品科学, 2014, 35(22):293-296.
HU L J, MENG X J, SUN X Y, et al.Effect of different pretreatments on the quality of frozen strawberries[J].Food Science, 2014, 35(22):293-296.
[21] 严嘉玮, 路洪艳, 李莉, 等.2种草莓成熟过程中果实特征品质指标的变化[J].食品科学, 2017, 38(4):125-132.
YAN J W, LU H Y, LI L, et al.Variations in quality characteristics of two strawberry cultivars during fruit ripening[J].Food Science, 2017, 38(4):125-132.
[22] 段文凯, 尹涛, 解玲琴.草莓花青素的微波提取工艺研究[J].现代食品, 2016(20):79-84.
DUAN W K, YIN T, XIE L Q.Research on the microwave technology of anthocyanin from strawberry[J].Modern Food, 2016(20):79-84.
[23] 王俊涛. 固体糖渍对芒果脱水传质和品质的影响研究[D].南宁:广西大学, 2020.
WANG J T.Study on the effect of solid sugar cane on dehydration mass transfer and quality of mango[D].Nanning:Guangxi University, 2020.
[24] 赵宇瑛, 张汉锋.花青素的研究现状及发展趋势[J].安徽农业科学, 2005, 33(5):904-905;907.
ZHAO Y Y, ZHANG H F.Current situation and investigation of anthocyanidin and its progressive trend[J].Journal of Anhui Agricultural Sciences, 2005, 33(5):904-905;907.
[25] KHAN M A M, AHRNÉ L, OLIVEIRA J C, et al.Prediction of water and soluble solids concentration during osmotic dehydration of mango[J].Food and Bioproducts Processing, 2008, 86(1):7-13.
[26] 黄静, 杨政水.莴笋渗糖的影响因素分析[J].贵州农业科学, 2006, 34(3):13-15.
HUANG J, YANG Z S.Analysis of affecting factors infiltration sugar of lettuce[J].Guizhou Agricultural Sciences, 2006, 34(3):13-15.