[1] HOUGHTON C A, FASSETT R G, COOMBES J S.Sulforaphane:Translational research from laboratory bench to clinic[J].Nutrition Reviews, 2013, 71(11):709-726.
[2] MARTÍNEZ-ZAMORA L, CASTILLEJO N, ARTÉS-HERNÁNDEZ F.Postharvest UV-B and UV-C radiation enhanced the biosynthesis of glucosinolates and isothiocyanates in Brassicaceae sprouts[J].Postharvest Biology and Technology, 2021, 181:111650.
[3] ZHANG J, LI X Q, GE P, et al.Sulforaphene:Formation, stability, separation, purification, determination and biological activities[J].Separation & Purification Reviews, 2022, 51(3):330-339.
[4] SHAPIRO T A, FAHEY J W, DINKOVA-KOSTOVA A T, et al.Safety, tolerance, and metabolism of broccoli sprout glucosinolates and isothiocyanates:A clinical phase I study[J].Nutrition and Cancer, 2006, 55(1):53-62.
[5] CAMPAS-BAYPOLI O N, SÁNCHEZ-MACHADO D I, BUENO-SOLANO C, et al.HPLC method validation for measurement of sulforaphane level in broccoli by-products[J].Biomedical Chromatography, 2009,24:387-392.
[6] SHISHU, KAUR I P.Inhibition of cooked food-induced mutagenesis by dietary constituents:Comparison of two natural isothiocyanates[J].Food Chemistry, 2009, 112(4):977-981.
[7] PILIPCZUK T, KUSZNIEREWICZ B, CHMIEL T, et al.Simultaneous determination of individual isothiocyanates in plant samples by HPLC-DAD-MS following SPE and derivatization with N-acetyl-l-cysteine[J].Food Chemistry, 2017, 214:587-596.
[8] SUN J H, CHARRON C S, NOVOTNY J A, et al.Profiling glucosinolate metabolites in human urine and plasma after broccoli consumption using non-targeted and targeted metabolomic analyses[J].Food Chemistry, 2020, 309:125660.
[9] 娄艳坤, 杜宣利, 张羽霄, 等.冷榨萝卜籽油生产的工艺技术实践[J].现代食品, 2018(16):138-141.
LOU Y K, DU X L, ZHANG Y X, et al.Technology and practice of the production of cold pressed radish seed oil[J].Modern Food, 2018(16):138-141.
[10] KUANG P Q, SONG D, YUAN Q P, et al.Preparative separation and purification of sulforaphene from radish seeds by high-speed countercurrent chromatography[J].Food Chemistry, 2013, 136(2):309-315.
[11] SONGSAK T, LOCKWOOD G B.Glucosinolates of seven medicinal plants from Thailand[J].Fitoterapia, 2002, 73(3):209-216.
[12] BARILLARI J, CERVELLATI R, PAOLINI M, et al.Isolation of 4-methylthio-3-butenyl glucosinolate from Raphanus sativus sprouts (kaiware daikon) and its redox properties[J].Journal of Agricultural and Food Chemistry, 2005, 53(26):9890-9896.
[13] LIM S, LEE J, KIM J K.Analysis of isothiocyanates in newly generated vegetables, Baemuchae (×Brassicoraphanus) as affected by growth[J].International Journal of Food Science & Technology, 2009, 44(7):1401-1407.
[14] SIVAKUMAR G, ALIBONI A, BACCHETTA L.HPLC screening of anti-cancer sulforaphane from important European Brassica species[J].Food Chemistry, 2007, 104(4):1761-1764.
[15] CONAWAY C C, GETAHUN S M, LIEBES L L, et al.Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli[J].Nutrition and Cancer, 2000, 38(2):168-178.
[16] LEE J G, LIM S, KIM J, et al.The mechanism of deterioration of the glucosinolate-myrosynase system in radish roots during cold storage after harvest[J].Food Chemistry, 2017, 233:60-68.
[17] SUN J, WANG Y F, PANG X Y, et al.The effect of processing and cooking on glucoraphanin and sulforaphane in brassica vegetables[J].Food Chemistry, 2021, 360:130007.
[18] TIAN G F, LI Y, CHENG L, et al.The mechanism of sulforaphene degradation to different water contents[J].Food Chemistry, 2016, 194:1022-1027.
[19] WU Y F, ZOU L G, MAO J W, et al.Stability and encapsulation efficiency of sulforaphane microencapsulated by spray drying[J].Carbohydrate Polymers, 2014, 102:497-503.
[20] 肖倩, 梁浩, 袁其朋.温度、pH和光照对莱菔硫烷水溶液稳定性的影响[J].中国药学杂志, 2007, 42(3):193-196.
XIAO Q, LIANG H, YUAN Q P.Effect of temperature, pH and light on the stability of sulforaphane solution[J].Chinese Pharmaceutical Journal, 2007, 42(3):193-196.
[21] WU Y F, MAO J W, MEI L H, et al.Kinetic studies of the thermal degradation of sulforaphane and its hydroxypropyl-β-cyclodextrin inclusion complex[J].Food Research International, 2013, 53(1):529-533.
[22] SONG D, LIANG H, KUANG P Q, et al.Instability and structural change of 4-methylsulfinyl-3-butenyl isothiocyanate in the hydrolytic process[J].Journal of Agricultural and Food Chemistry, 2013, 61(21):5097-5102.
[23] TIAN G F, LI Y A, YUAN Q P, et al.The stability and degradation kinetics of Sulforaphene in microcapsules based on several biopolymers via spray drying[J].Carbohydrate Polymers, 2015, 122:5-10.
[24] 张静. 西蓝花中萝卜硫素的提取工艺优化及其活性功能研究[D].哈尔滨:哈尔滨商业大学, 2021.
ZHANG J.Optimization of extraction process and activity function of sulforaphane from broccoli[D].Harbin:Harbin University of Commerce, 2021.
[25] YANG Y, YU H M, ZHOU X H.Covalent immobilization of thioglucosidase from radish seeds for continuous preparation of sulforaphene[J].Chemical Engineering Research and Design, 2020, 155:146-155.
[26] 程立, 李思彤, 袁其朋.黑芥子酶固定化在制备莱菔素中的应用[J].中国科学(化学), 2018, 48(6):676-682.
CHENG L, LI S T, YUAN Q P.The application of myrosinase immobilized in the production of sulforaphene[J].Scientia Sinica Chimica, 2018, 48(6):676-682.
[27] ZHANG J E, FENG C R, TAN X M, et al.Effect of aliphatic diamine spacer length on enzymatic performance of myrosinase immobilized on chitosan microsphere and its application for sulforaphene production[J].Journal of Biotechnology, 2019, 299:79-85.
[28] HWANG E S, KIM G H.Effects of various heating methods on glucosinolate, carotenoid and tocopherol concentrations in broccoli[J].International Journal of Food Sciences and Nutrition, 2013, 64(1):103-111.
[29] TABART J, PINCEMAIL J, KEVERS C, et al.Processing effects on antioxidant, glucosinolate, and sulforaphane contents in broccoli and red cabbage[J].European Food Research and Technology, 2018, 244(12):2085-2094.
[30] LIU Y B, ZHANG D, LI X D, et al.Enhancement of ultrasound-assisted extraction of sulforaphane from broccoli seeds via the application of microwave pretreatment[J].Ultrasonics Sonochemistry, 2022, 87:106061.
[31] LU Y J, PANG X Y, YANG T B.Microwave cooking increases sulforaphane level in broccoli[J].Food Science & Nutrition, 2020, 8(4):2052-2058.
[32] VERKERK R, DEKKER M.Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L.var.Capitata f.rubra DC.) after various microwave treatments[J].Journal of Agricultural and Food Chemistry, 2004, 52(24):7318-7323.
[33] WU Y F, LV C Z, ZOU L G, et al.Approaches for enhancing the stability and formation of sulforaphane[J].Food Chemistry, 2021, 345:128771.
[34] 姜睿, 李红燕, 薛长湖.不同处理方法对莱菔子中莱菔素和萝卜硫苷的影响[J].食品科技, 2019, 44(11):84-90.
JIANG R, LI H Y, XUE C H.Effects of different methods on glucoraphanin and sulforaphane contents in radish seed[J].Food Science and Technology, 2019, 44(11):84-90.
[35] WANG G C, FARNHAM M, JEFFERY E H.Impact of thermal processing on sulforaphane yield from broccoli (Brassica oleracea L.ssp.italica)[J].Journal of Agricultural and Food Chemistry, 2012, 60(27):6743-6748.
[36] PONGMALAI P, DEVAHASTIN S, CHIEWCHAN N, et al.Enhancing the recovery of cabbage glucoraphanin through the monitoring of sulforaphane content and myrosinase activity during extraction by different methods[J].Separation and Purification Technology, 2017, 174:338-344.
[37] WU Y H, LIN Y H, WANG C Y.High hydrostatic pressure treatment induced microstructure changes and isothiocyanates biosynthesis in kale[J].Food Chemistry, 2022, 383:132423.
[38] LIM S, LEE E J, KIM J.Decreased sulforaphene concentration and reduced myrosinase activity of radish (Raphanus sativus L.) root during cold storage[J].Postharvest Biology and Technology, 2015, 100:219-225.
[39] ZHANG J E, ZHOU X, FU M.Integrated utilization of red radish seeds for the efficient production of seed oil and sulforaphene[J].Food Chemistry, 2016, 192:541-547.
[40] GARCÍA-SALDAÑA J S, CAMPAS-BAYPOLI O N, SÁNCHEZ-MACHADO D I, et al.Separation and purification of sulforaphane (1-isothiocyanato-4-(methylsulfinyl) butane) from broccoli seeds by consecutive steps of adsorption-desorption-bleaching[J].Journal of Food Engineering, 2018, 237:162-170.
[41] KUANG P Q, SONG D, YUAN Q P, et al.Separation and purification of sulforaphene from radish seeds using macroporous resin and preparative high-performance liquid chromatography[J].Food Chemistry, 2013, 136(2):342-347.
[42] MUTO M, HUANG J W, TAKAHASHI H.Effect of water-soluble extracts of radish seed meal on control of lettuce brown leaf spot (Acremonium lactucae Lin et al.)[J].Plant Pathology Bulletin, 2004, 13:275-282.
[43] ZHANG Y, LV C Z, SUN J A, et al.Protective effects of broccoli extracts and sulforaphane against hydrogen peroxide induced oxidative stress in B16 cells[J].Journal of Functional Foods, 2021, 87:104833.
[44] 冯俊杰, 蒋海强, 董梅月, 等.超高效液相色谱-四极杆静电场轨道阱高分辨质谱法分析莱菔子化学成分[J].化学分析计量, 2021, 30(11):14-22.
FENG J J, JIANG H Q, DONG M Y, et al.Analysis of compositions of Raphani Semen by UPLC-Q-orbitrap-MS[J].Chemical Analysis and Meterage, 2021, 30(11):14-22.
[45] XING J J, CHENG Y L, CHEN P, et al.Effect of high-pressure homogenization on the extraction of sulforaphane from broccoli (Brassica oleracea) seeds[J].Powder Technology, 2019, 358:103-109.
[46] LIANG H, LI C F, YUAN Q P, et al.Separation and purification of sulforaphane from broccoli seeds by solid phase extraction and preparative high-performance liquid chromatography[J].Journal of Agricultural and Food Chemistry, 2007, 55(20):8047-8053.
[47] 孔凡华, 杨春雪, 方从容, 等.高效液相色谱法测定十字花科蔬菜中萝卜硫素的含量[J].食品与发酵工业, 2021, 47(8):218-223.
KONG F H, YANG C X, FANG C R, et al.Determination of sulforaphane in cruciferous vegetables by HPLC[J].Food and Fermentation Industries, 2021, 47(8):218-223.
[48] ZHANG Y, MAKAZA N, JIANG C M, et al.Supplementation of cooked broccoli with exogenous moringa myrosinase enhanced isothiocyanate formation[J].Food Chemistry, 2022, 395:133651.
[49] LOMELINO C L, ANDRING J T, MCKENNA R, et al.Asparagine synthetase:Function, structure, and role in disease[J].Journal of Biological Chemistry, 2017, 292(49):19952-19958.
[50] SANGTHONG S, WEERAPREEYAKUL N.Simultaneous quantification of sulforaphene and sulforaphane by reverse phase HPLC and their content in Raphanus sativus L.var.caudatus Alef extracts[J].Food Chemistry, 2016, 201:139-144.