[1] HENCHION M, HAYES M, MULLEN A, et al.Future protein supply and demand:Strategies and factors influencing a sustainable equilibrium[J].Foods, 2017, 6(7):53.
[2] VIRCHOW R.Weitere mittheilungen über das vorkommen der pflanzlichen cellulose beim menschen[J].Archiv Für Pathologische Anatomie Und Physiologie Und Für Klinische Medicin, 1854, 6(2):268-271.
[3] VASSALLO N.Natural Compounds as Therapeutic Agents for Amyloidogenic Diseases[M].Switzerland:Springer Cham, 2015.
[4] FÄNDRICH M.On the structural definition of amyloid fibrils and other polypeptide aggregates[J].Cellular and Molecular Life Sciences, 2007, 64(16):2066-2078.
[5] SASSO L, SUEI S, DOMIGAN L, et al.Versatile multi-functionalization of protein nanofibrils for biosensor applications[J].Nanoscale, 2014, 6(3):1629-1634.
[6] KAUR M, ROBERTS S, HEALY J, et al.Crystallin nanofibrils:A functionalizable nanoscaffold with broad applications manufactured from waste[J].ChemPlusChem, 2015, 80(5):810-819.
[7] PEYDAYESH M, MEZZENGA R.Protein nanofibrils for next generation sustainable water purification[J].Nature Communications, 2021, 12:3248.
[8] JANSENS K J A, ROMBOUTS I, GROOTAERT C, et al.Rational design of amyloid-like fibrillary structures for tailoring food protein techno-functionality and their potential health implications[J].Comprehensive Reviews in Food Science and Food Safety, 2019, 18(1):84-105.
[9] SHEN Y, POSAVEC L, BOLISETTY S, et al.Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron[J].Nature Nanotechnology, 2017, 12(7):642-647.
[10] JIANG F C, PAN Y J, PENG D F, et al.Tunable self-assemblies of whey protein isolate fibrils for Pickering emulsions structure regulation[J].Food Hydrocolloids, 2022, 124:107264.
[11] USUELLI M, GERMERDONK T, CAO Y P, et al.Polysaccharide-reinforced amyloid fibril hydrogels and aerogels[J].Nanoscale, 2021, 13(29):12534-12545.
[12] BENSON M D, BUXBAUM J N, EISENBERG D S, et al.Amyloid nomenclature 2018:Recommendations by the International Society of Amyloidosis (ISA) nomenclature committee[J].Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2018, 25(4):215-219.
[13] 单冠程, 李梦竹, 徐泽健, 等.食源蛋白淀粉样纤维及其在食品中的应用研究进展[J].未来食品科学, 2021(2):39-52.
SHAN G C, LI M Z, XU Z J, et al.Recent progress of food amyloid fibrils applications in food[J].Future Food Science, 2021(2):39-52.
[14] SUNDE M, SERPELL L C, BARTLAM M, et al.Common core structure of amyloid fibrils by synchrotron X-ray diffraction[J].Journal of Molecular Biology, 1997, 273(3):729-739.
[15] OTZEN D, NIELSEN P H.We find them here, we find them there:Functional bacterial amyloid[J].Cellular and Molecular Life Sciences, 2008, 65(6):910-927.
[16] EISENBERG D S, SAWAYA M R.Structural studies of amyloid proteins at the molecular level[J].Annual Review of Biochemistry, 2017, 86:69-95.
[17] ADAMCIK J, JUNG J M, FLAKOWSKI J, et al.Understanding amyloid aggregation by statistical analysis of atomic force microscopy images[J].Nature Nanotechnology, 2010, 5(6):423-428.
[18] EISELE Y S, MONTEIRO C, FEARNS C, et al.Targeting protein aggregation for the treatment of degenerative diseases[J].Nature Reviews Drug Discovery, 2015, 14(11):759-780.
[19] BALBIRNIE M, GROTHE R, EISENBERG D S.An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid[J].Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(5):2375-2380.
[20] SAWAYA M R, SAMBASHIVAN S, NELSON R, et al.Atomic structures of amyloid cross-β spines reveal varied steric zippers[J].Nature, 2007, 447(7143):453-457.
[21] TYCKO R.Solid-state NMR studies of amyloid fibril structure[J].Annual Review of Physical Chemistry, 2011, 62:279-299.
[22] GRAS S L, WADDINGTON L J, GOLDIE K N.Transmission Electron Microscopy of Amyloid Fibrils[M]//Protein Folding, Misfolding, and Disease.Totowa, NJ:Humana Press, 2011:197-214.
[23] BAI X C, MCMULLAN G, SCHERES S H W.How cryo-EM is revolutionizing structural biology[J].Trends in Biochemical Sciences, 2015, 40(1):49-57.
[24] WANG Y J, SHEN Y T, QI G Y, et al.Formation and physicochemical properties of amyloid fibrils from soy protein[J].International Journal of Biological Macromolecules, 2020, 149:609-616.
[25] 秦哲. 淀粉样蛋白纤维化的机理及相关分子间作用的研究[D].保定:河北大学, 2018.
QIN Z.The mechanism of amyloid protein fibrillation and relevant molecular interactions[D].Baoding:Hebei University, 2018.
[26] KHURANA R, COLEMAN C, IONESCU-ZANETTI C, et al.Mechanism of thioflavin T binding to amyloid fibrils[J].Journal of Structural Biology, 2005, 151(3):229-238.
[27] LASSÉ M, ULLUWISHEWA D, HEALY J, et al.Evaluation of protease resistance and toxicity of amyloid-like food fibrils from whey, soy, kidney bean, and egg white[J].Food Chemistry, 2016, 192:491-498.
[28] HU Y, HE C X, WOO M W, et al.Formation of fibrils derived from whey protein isolate:Structural characteristics and protease resistance[J].Food & Function, 2019, 10(12):8106-8115.
[29] AN B Z, WU X C, LI M J, et al.Hydrophobicity-modulating self-assembled morphologies of α-zein in aqueous ethanol[J].International Journal of Food Science & Technology, 2016, 51(12):2621-2629.
[30] LI T, WANG L, GENG H, et al.Formation, structural characteristics, foaming and emulsifying properties of rice glutelin fibrils[J].Food Chemistry, 2021, 354:129554.
[31] MUNIALO C D, MARTIN A H, VAN DER LINDEN E, et al.Fibril formation from pea protein and subsequent gel formation[J].Journal of Agricultural and Food Chemistry, 2014, 62(11):2418-2427.
[32] GARVEY M, MEEHAN S, GRAS S L, et al.A radish seed antifungal peptide with a high amyloid fibril-forming propensity[J].Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2013, 1834(8):1615-1623.
[33] WEIJERS M, SAGIS L M C, VEERMAN C, et al.Rheology and structure of ovalbumin gels at low pH and low ionic strength[J].Food Hydrocolloids, 2002, 16(3):269-276.
[34] LARA C, ADAMCIK J, JORDENS S, et al.General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons[J].Biomacromolecules, 2011, 12(5):1868-1875.
[35] NG S K, NYAM K L, NEHDI I A, et al.Impact of stirring speed on β-lactoglobulin fibril formation[J].Food Science and Biotechnology, 2016, 25(1):15-21.
[36] ZHANG Y H, HUANG L H.Effect of heat-induced formation of rice bran protein fibrils on morphological structure and physicochemical properties in solutions and gels[J].Food Science and Biotechnology, 2014, 23(5):1417-1423.
[37] GRAVELAND-BIKKER J F, DE KRUIF C G.Unique milk protein based nanotubes:Food and nanotechnology meet[J].Trends in Food Science & Technology, 2006, 17(5):196-203.
[38] FENG B Y, TOYAMA B H, WILLE H, et al.Small-molecule aggregates inhibit amyloid polymerization[J].Nature Chemical Biology, 2008, 4(3):197-199.
[39] MACINDOE I, KWAN A H, REN Q, et al.Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS[J].Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(14):E804-E811.
[40] MOAYEDZADEH S, MADADLOU A, KHOSROWSHAHI ASL A.Formation mechanisms, handling and digestibility of food protein nanofibrils[J].Trends in Food Science & Technology, 2015, 45(1):50-59.
[41] VEERMAN C, DE SCHIFFART G, SAGIS L M C, et al.Irreversible self-assembly of ovalbumin into fibrils and the resulting network rheology[J].International Journal of Biological Macromolecules, 2003, 33(1-3):121-127.
[42] BHATTACHARYA M, DOGRA P.Self-assembly of ovalbumin amyloid pores:effects on membrane permeabilization, dipole potential, and bilayer fluidity[J].Langmuir, 2015, 31(32):8911-8922.
[43] JANSENS K J A, BRIJS K, STETEFELD J, et al.Ultrasonic characterization of amyloid-like ovalbumin aggregation[J].ACS Omega, 2017, 2(8):4612-4620.
[44] LOVEDAY S M, SU J H, RAO M A, et al.Whey protein nanofibrils:The environment-morphology-functionality relationship in lyophilization, rehydration, and seeding[J].Journal of Agricultural and Food Chemistry, 2012, 60(20):5229-5236.
[45] YUE J X, SHU M, YAO X L, et al.Fibrillar assembly of whey protein isolate and gum Arabic as iron carrier for food fortification[J].Food Hydrocolloids, 2022, 128:107608.
[46] 孙秀山, 颜洁, 管泽琴.血常规检测对缺铁性贫血和地中海贫血鉴别诊断中的应用[J].四川医学, 2013, 34(3):440-441.
SUN X S, YAN J, GUAN Z Q.Application of routine blood test in differential diagnosis of iron deficiency anemia and thalassemia[J].Sichuan Medical Journal, 2013, 34(3):440-441.
[47] 胡静, 朴建华.铁强化食品研究进展[J].中国食品卫生杂志, 2007, 19(3):276-280.
HU J, PIAO J H.Progress of iron-fortified food[J].Chinese Journal of Food Hygiene, 2007, 19(3):276-280.
[48] BOLISETTY S, BODDUPALLI C S, HANDSCHIN S, et al.Amyloid fibrils enhance transport of metal nanoparticles in living cells and induced cytotoxicity[J].Biomacromolecules, 2014, 15(7):2793-2799.
[49] 张晓璐, 李英鹏, 吕邵娃, 等.姜黄素纳米载体与应用的研究进展[J].当代化工, 2021, 50(11):2685-2688.
ZHANG X L, LI Y P, LYU S W, et al.Research progress of curcumin nanocarriers and their applications[J].Contemporary Chemical Industry, 2021, 50(11):2685-2688.
[50] MOHAMMADIAN M, SALAMI M, MOMEN S M, et al.Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils[J].Food Hydrocolloids, 2019, 87:902-914.
[51] 张倩, 柏帅, 李克文, 等.白藜芦醇研究进展及现状[J].精细与专用化学品, 2017, 25(10):39-41.
ZHANG Q, BAI S, LI K W, et al.Research progress and status of resveratrol[J].Fine and Specialty Chemicals, 2017, 25(10):39-41.
[52] YI J, HE Q Y, PENG G F, et al.Improved water solubility, chemical stability, antioxidant and anticancer activity of resveratrol via nanoencapsulation with pea protein nanofibrils[J].Food Chemistry, 2022, 377:131942.
[53] HODGES J K, SASAKI G Y, BRUNO R S.Anti-inflammatory activities of green tea catechins along the gut-liver axis in nonalcoholic fatty liver disease:Lessons learned from preclinical and human studies[J].The Journal of Nutritional Biochemistry, 2020, 85:108478.
[54] HU B, YU S J, SHI C, et al.Amyloid-polyphenol hybrid nanofilaments mitigate colitis and regulate gut microbial dysbiosis[J].ACS Nano, 2020, 14(3):2760-2776.