综述与专题评论

可持续蛋白纳米纤维及其功能因子递送研究进展

  • 郑为君 ,
  • 张玲莺 ,
  • 陈星
展开
  • (食品科学与资源挖掘全国重点实验室(江南大学),江苏 无锡, 214122)
第一作者:硕士研究生(陈星副研究员为通信作者,E-mail:xingchen@jiangnan.edu.cn)

收稿日期: 2022-10-05

  修回日期: 2022-10-23

  网络出版日期: 2023-08-31

基金资助

国家自然科学基金项目(31901611);江苏省自然科学基金项目(BK20190589);中国博士后科学基金面上项目(2023M731336)

Research progress on sustainable protein nanofibers and their delivery of functional nutrients

  • ZHENG Weijun ,
  • ZHANG Lingying ,
  • CHEN Xing
Expand
  • (State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China)

Received date: 2022-10-05

  Revised date: 2022-10-23

  Online published: 2023-08-31

摘要

随着世界人口的快速增长,人们对可持续食源蛋白质的需求日益增长。同时,对其营养与功能也提出了更高要求,如何在保障营养供给的同时,增强蛋白质的功能,提高其应用效率正成为食品工业所面临的重大挑战之一。过去十年,天然蛋白的功能因子递送功能一直是研究热点,然而,蛋白类功能载体具有一些应用难点,如蛋白分子对环境刺激敏感,载体结构稳定性差,递送效率和靶向性低下等。蛋白纳米纤维化改造可显著提升其载体性能,形成的淀粉样纤维具有特殊结构和良好的物化特性,其对营养小分子也表现出高亲和力,是营养功能因子的优良载体。该文重点阐述了可持续蛋白的纤维化过程以及淀粉样原纤维包埋递送功能因子的原理及途径,旨在为可持续蛋白形成的淀粉样纤维在食品工业中的高质量应用提供参考。

本文引用格式

郑为君 , 张玲莺 , 陈星 . 可持续蛋白纳米纤维及其功能因子递送研究进展[J]. 食品与发酵工业, 2023 , 49(15) : 320 -325 . DOI: 10.13995/j.cnki.11-1802/ts.033855

Abstract

With the rapid growth of the world population, the demand for sustainable food source protein is increasing rapidly. At the same time, it also puts forward higher requirements for its nutrition and function. How to enhance the function of protein and improve its application efficiency while ensuring the supply of nutrition is becoming one of the major challenges facing the food industry. In the past decade, the functional factor delivery function of natural proteins has been a research hotspot and attracted wide attention. However, there are many difficulties in the application of protein functional carriers, such as the sensitivity of protein molecules to environmental stimuli, the poor stability of vector structures, and the low delivery efficiency and targeting. Protein nanofibrils modification can significantly improve the performance of its carrier. The formed amyloid fiber has a special structure and good physical and chemical properties, and it also shows a high affinity for nutritional small molecules. This article focused on the fibrosis process of sustainable protein and the principle and approach of amyloid fiber embedding and delivering functional factors to provide a reference for the high-quality application of amyloid fiber formed by sustainable protein in the food industry.

参考文献

[1] HENCHION M, HAYES M, MULLEN A, et al.Future protein supply and demand:Strategies and factors influencing a sustainable equilibrium[J].Foods, 2017, 6(7):53.
[2] VIRCHOW R.Weitere mittheilungen über das vorkommen der pflanzlichen cellulose beim menschen[J].Archiv Für Pathologische Anatomie Und Physiologie Und Für Klinische Medicin, 1854, 6(2):268-271.
[3] VASSALLO N.Natural Compounds as Therapeutic Agents for Amyloidogenic Diseases[M].Switzerland:Springer Cham, 2015.
[4] FÄNDRICH M.On the structural definition of amyloid fibrils and other polypeptide aggregates[J].Cellular and Molecular Life Sciences, 2007, 64(16):2066-2078.
[5] SASSO L, SUEI S, DOMIGAN L, et al.Versatile multi-functionalization of protein nanofibrils for biosensor applications[J].Nanoscale, 2014, 6(3):1629-1634.
[6] KAUR M, ROBERTS S, HEALY J, et al.Crystallin nanofibrils:A functionalizable nanoscaffold with broad applications manufactured from waste[J].ChemPlusChem, 2015, 80(5):810-819.
[7] PEYDAYESH M, MEZZENGA R.Protein nanofibrils for next generation sustainable water purification[J].Nature Communications, 2021, 12:3248.
[8] JANSENS K J A, ROMBOUTS I, GROOTAERT C, et al.Rational design of amyloid-like fibrillary structures for tailoring food protein techno-functionality and their potential health implications[J].Comprehensive Reviews in Food Science and Food Safety, 2019, 18(1):84-105.
[9] SHEN Y, POSAVEC L, BOLISETTY S, et al.Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron[J].Nature Nanotechnology, 2017, 12(7):642-647.
[10] JIANG F C, PAN Y J, PENG D F, et al.Tunable self-assemblies of whey protein isolate fibrils for Pickering emulsions structure regulation[J].Food Hydrocolloids, 2022, 124:107264.
[11] USUELLI M, GERMERDONK T, CAO Y P, et al.Polysaccharide-reinforced amyloid fibril hydrogels and aerogels[J].Nanoscale, 2021, 13(29):12534-12545.
[12] BENSON M D, BUXBAUM J N, EISENBERG D S, et al.Amyloid nomenclature 2018:Recommendations by the International Society of Amyloidosis (ISA) nomenclature committee[J].Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2018, 25(4):215-219.
[13] 单冠程, 李梦竹, 徐泽健, 等.食源蛋白淀粉样纤维及其在食品中的应用研究进展[J].未来食品科学, 2021(2):39-52.
SHAN G C, LI M Z, XU Z J, et al.Recent progress of food amyloid fibrils applications in food[J].Future Food Science, 2021(2):39-52.
[14] SUNDE M, SERPELL L C, BARTLAM M, et al.Common core structure of amyloid fibrils by synchrotron X-ray diffraction[J].Journal of Molecular Biology, 1997, 273(3):729-739.
[15] OTZEN D, NIELSEN P H.We find them here, we find them there:Functional bacterial amyloid[J].Cellular and Molecular Life Sciences, 2008, 65(6):910-927.
[16] EISENBERG D S, SAWAYA M R.Structural studies of amyloid proteins at the molecular level[J].Annual Review of Biochemistry, 2017, 86:69-95.
[17] ADAMCIK J, JUNG J M, FLAKOWSKI J, et al.Understanding amyloid aggregation by statistical analysis of atomic force microscopy images[J].Nature Nanotechnology, 2010, 5(6):423-428.
[18] EISELE Y S, MONTEIRO C, FEARNS C, et al.Targeting protein aggregation for the treatment of degenerative diseases[J].Nature Reviews Drug Discovery, 2015, 14(11):759-780.
[19] BALBIRNIE M, GROTHE R, EISENBERG D S.An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid[J].Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(5):2375-2380.
[20] SAWAYA M R, SAMBASHIVAN S, NELSON R, et al.Atomic structures of amyloid cross-β spines reveal varied steric zippers[J].Nature, 2007, 447(7143):453-457.
[21] TYCKO R.Solid-state NMR studies of amyloid fibril structure[J].Annual Review of Physical Chemistry, 2011, 62:279-299.
[22] GRAS S L, WADDINGTON L J, GOLDIE K N.Transmission Electron Microscopy of Amyloid Fibrils[M]//Protein Folding, Misfolding, and Disease.Totowa, NJ:Humana Press, 2011:197-214.
[23] BAI X C, MCMULLAN G, SCHERES S H W.How cryo-EM is revolutionizing structural biology[J].Trends in Biochemical Sciences, 2015, 40(1):49-57.
[24] WANG Y J, SHEN Y T, QI G Y, et al.Formation and physicochemical properties of amyloid fibrils from soy protein[J].International Journal of Biological Macromolecules, 2020, 149:609-616.
[25] 秦哲. 淀粉样蛋白纤维化的机理及相关分子间作用的研究[D].保定:河北大学, 2018.
QIN Z.The mechanism of amyloid protein fibrillation and relevant molecular interactions[D].Baoding:Hebei University, 2018.
[26] KHURANA R, COLEMAN C, IONESCU-ZANETTI C, et al.Mechanism of thioflavin T binding to amyloid fibrils[J].Journal of Structural Biology, 2005, 151(3):229-238.
[27] LASSÉ M, ULLUWISHEWA D, HEALY J, et al.Evaluation of protease resistance and toxicity of amyloid-like food fibrils from whey, soy, kidney bean, and egg white[J].Food Chemistry, 2016, 192:491-498.
[28] HU Y, HE C X, WOO M W, et al.Formation of fibrils derived from whey protein isolate:Structural characteristics and protease resistance[J].Food & Function, 2019, 10(12):8106-8115.
[29] AN B Z, WU X C, LI M J, et al.Hydrophobicity-modulating self-assembled morphologies of α-zein in aqueous ethanol[J].International Journal of Food Science & Technology, 2016, 51(12):2621-2629.
[30] LI T, WANG L, GENG H, et al.Formation, structural characteristics, foaming and emulsifying properties of rice glutelin fibrils[J].Food Chemistry, 2021, 354:129554.
[31] MUNIALO C D, MARTIN A H, VAN DER LINDEN E, et al.Fibril formation from pea protein and subsequent gel formation[J].Journal of Agricultural and Food Chemistry, 2014, 62(11):2418-2427.
[32] GARVEY M, MEEHAN S, GRAS S L, et al.A radish seed antifungal peptide with a high amyloid fibril-forming propensity[J].Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2013, 1834(8):1615-1623.
[33] WEIJERS M, SAGIS L M C, VEERMAN C, et al.Rheology and structure of ovalbumin gels at low pH and low ionic strength[J].Food Hydrocolloids, 2002, 16(3):269-276.
[34] LARA C, ADAMCIK J, JORDENS S, et al.General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons[J].Biomacromolecules, 2011, 12(5):1868-1875.
[35] NG S K, NYAM K L, NEHDI I A, et al.Impact of stirring speed on β-lactoglobulin fibril formation[J].Food Science and Biotechnology, 2016, 25(1):15-21.
[36] ZHANG Y H, HUANG L H.Effect of heat-induced formation of rice bran protein fibrils on morphological structure and physicochemical properties in solutions and gels[J].Food Science and Biotechnology, 2014, 23(5):1417-1423.
[37] GRAVELAND-BIKKER J F, DE KRUIF C G.Unique milk protein based nanotubes:Food and nanotechnology meet[J].Trends in Food Science & Technology, 2006, 17(5):196-203.
[38] FENG B Y, TOYAMA B H, WILLE H, et al.Small-molecule aggregates inhibit amyloid polymerization[J].Nature Chemical Biology, 2008, 4(3):197-199.
[39] MACINDOE I, KWAN A H, REN Q, et al.Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS[J].Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(14):E804-E811.
[40] MOAYEDZADEH S, MADADLOU A, KHOSROWSHAHI ASL A.Formation mechanisms, handling and digestibility of food protein nanofibrils[J].Trends in Food Science & Technology, 2015, 45(1):50-59.
[41] VEERMAN C, DE SCHIFFART G, SAGIS L M C, et al.Irreversible self-assembly of ovalbumin into fibrils and the resulting network rheology[J].International Journal of Biological Macromolecules, 2003, 33(1-3):121-127.
[42] BHATTACHARYA M, DOGRA P.Self-assembly of ovalbumin amyloid pores:effects on membrane permeabilization, dipole potential, and bilayer fluidity[J].Langmuir, 2015, 31(32):8911-8922.
[43] JANSENS K J A, BRIJS K, STETEFELD J, et al.Ultrasonic characterization of amyloid-like ovalbumin aggregation[J].ACS Omega, 2017, 2(8):4612-4620.
[44] LOVEDAY S M, SU J H, RAO M A, et al.Whey protein nanofibrils:The environment-morphology-functionality relationship in lyophilization, rehydration, and seeding[J].Journal of Agricultural and Food Chemistry, 2012, 60(20):5229-5236.
[45] YUE J X, SHU M, YAO X L, et al.Fibrillar assembly of whey protein isolate and gum Arabic as iron carrier for food fortification[J].Food Hydrocolloids, 2022, 128:107608.
[46] 孙秀山, 颜洁, 管泽琴.血常规检测对缺铁性贫血和地中海贫血鉴别诊断中的应用[J].四川医学, 2013, 34(3):440-441.
SUN X S, YAN J, GUAN Z Q.Application of routine blood test in differential diagnosis of iron deficiency anemia and thalassemia[J].Sichuan Medical Journal, 2013, 34(3):440-441.
[47] 胡静, 朴建华.铁强化食品研究进展[J].中国食品卫生杂志, 2007, 19(3):276-280.
HU J, PIAO J H.Progress of iron-fortified food[J].Chinese Journal of Food Hygiene, 2007, 19(3):276-280.
[48] BOLISETTY S, BODDUPALLI C S, HANDSCHIN S, et al.Amyloid fibrils enhance transport of metal nanoparticles in living cells and induced cytotoxicity[J].Biomacromolecules, 2014, 15(7):2793-2799.
[49] 张晓璐, 李英鹏, 吕邵娃, 等.姜黄素纳米载体与应用的研究进展[J].当代化工, 2021, 50(11):2685-2688.
ZHANG X L, LI Y P, LYU S W, et al.Research progress of curcumin nanocarriers and their applications[J].Contemporary Chemical Industry, 2021, 50(11):2685-2688.
[50] MOHAMMADIAN M, SALAMI M, MOMEN S M, et al.Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils[J].Food Hydrocolloids, 2019, 87:902-914.
[51] 张倩, 柏帅, 李克文, 等.白藜芦醇研究进展及现状[J].精细与专用化学品, 2017, 25(10):39-41.
ZHANG Q, BAI S, LI K W, et al.Research progress and status of resveratrol[J].Fine and Specialty Chemicals, 2017, 25(10):39-41.
[52] YI J, HE Q Y, PENG G F, et al.Improved water solubility, chemical stability, antioxidant and anticancer activity of resveratrol via nanoencapsulation with pea protein nanofibrils[J].Food Chemistry, 2022, 377:131942.
[53] HODGES J K, SASAKI G Y, BRUNO R S.Anti-inflammatory activities of green tea catechins along the gut-liver axis in nonalcoholic fatty liver disease:Lessons learned from preclinical and human studies[J].The Journal of Nutritional Biochemistry, 2020, 85:108478.
[54] HU B, YU S J, SHI C, et al.Amyloid-polyphenol hybrid nanofilaments mitigate colitis and regulate gut microbial dysbiosis[J].ACS Nano, 2020, 14(3):2760-2776.
文章导航

/