研究报告

代谢工程强化tolC缺失大肠杆菌的血红素合成

  • 张鑫 ,
  • 杨燕 ,
  • 段小燕 ,
  • 唐蕾
展开
  • 1(江南大学 生物工程学院,江苏 无锡,214122)
    2(工业生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
第一作者:硕士研究生(唐蕾教授为通信作者,E-mail:ltang@jiangnan.edu.cn)

收稿日期: 2022-11-03

  修回日期: 2022-12-05

  网络出版日期: 2023-09-27

基金资助

111引智计划项目(111-2-06);国家轻工技术与工程一流学科自主课题资助项目(LITE2018-27);江苏省现代工业发酵协同创新中心资助项目(BY2013015-11)

Metabolic engineering of tolC-deleted Escherichia coli for enhancement of heme synthesis

  • ZHANG Xin ,
  • YANG Yan ,
  • DUAN Xiaoyan ,
  • TANG Lei
Expand
  • 1(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
    2(Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China)

Received date: 2022-11-03

  Revised date: 2022-12-05

  Online published: 2023-09-27

摘要

血红素作为生物体可利用的铁源应用于食品和医疗领域。利用微生物发酵生产血红素具有工业前景但产量偏低,该研究利用代谢工程改造大肠杆菌,提高菌体血红素合成水平。通过构建tolC缺失大肠杆菌,进而过表达hemAhemH,外源添加Fe2+的方式实现血红素产量的提升。结果表明,在tolC缺失菌株WTΔT中过表达hemA导致卟啉的积累;在外源添加80 μmol/L的Fe2+时,共表达hemAhemH的菌株WTΔT-AH,胞内血红素含量达到40.18 μmol/L,是野生菌WT的3.98倍。该研究为使用重组大肠杆菌高效生产血红素提供了一定的理论依据和潜在的应用价值。

本文引用格式

张鑫 , 杨燕 , 段小燕 , 唐蕾 . 代谢工程强化tolC缺失大肠杆菌的血红素合成[J]. 食品与发酵工业, 2023 , 49(17) : 10 -15 . DOI: 10.13995/j.cnki.11-1802/ts.034196

Abstract

As an iron source that can be utilized by organisms, heme is applied to the fields of food and pharmaceutical industry. The production of heme by microbial fermentation has industrial potentials but the yield is low. In this study, the synthetic level of heme in Escherichia coli were improved through metabolic engineering. The heme yield was increased by constructing tolC-deleted Escherichia coli (WTΔT), overexpressing hemA and hemH, and adding Fe2+ exogenously. The results showed that over-expression of hemA in the tolC-deleted strain resulted in the accumulation of porphyrins. When 80 μmol/L Fe2+ was added, the strain co-expressing hemA and hemH (WTΔT-AH) exhibited intracellular heme content of 40.18 μmol/L, 3.98-fold of that in WT. The above results provide a certain theoretical basis and value for improvement of heme yield by recombinant Escherichia coli.

参考文献

[1] BRYANT D A, HUNTER C N, WARREN M J.Biosynthesis of the modified tetrapyrroles-the pigments of life[J].The Journal of Biological Chemistry, 2020, 295(20):6888-6925.
[2] 邓晔, 郭瑶雪, 李春, 等.血红素合成中间体:卟啉类化合物作为生物标记物的研究进展[J].中南药学, 2015, 13(5):509-512.
DENG Y, GUO Y X, LI C, et al.Research progress on the porphyrin compounds as a biological marker[J].Central South Pharmacy, 2015, 13(5):509-512.
[3] FRANKENBERG N, MOSER J, JAHN D.Bacterial heme biosynthesis and its biotechnological application[J].Applied Microbiology and Biotechnology, 2003, 63(2):115-127.
[4] MÖBIUS K, ARIAS-CARTIN R, BRECKAU D, et al.Heme biosynthesis is coupled to electron transport chains for energy generation[J].Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(23):10436-10441.
[5] HAMZA I.Intracellular trafficking of porphyrins[J].ACS Chemical Biology, 2006, 1(10):627-629.
[6] FRUNZKE J, GÄTGENS C, BROCKER M, et al.Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA[J].Journal of Bacteriology, 2011, 193(5):1212-1221.
[7] 李志钊, 叶春华.血红素的应用与生产技术研究进展[J].食品研究与开发, 2000, 21(5):12-14.
LI Z Z, YE C H.Research progress on application and production technology of heme[J].Food Research and Development, 2000, 21(5):12-14.
[8] 祝霞, 李颍, 付文力, 等.碱性蛋白酶酶解提取羊血血红素工艺条件优化[J].食品工业科技, 2014, 35(18):199-202.
ZHU X, LI Y, FU W L, et al.Process optimization of the alkaline enzymatic extracting heme from sheep blood[J].Science and Technology of Food Industry, 2014, 35(18):199-202.
[9] 瞿桂香, 黄耀江, 董明盛.血红素制备工艺研究进展[J].中央民族大学学报(自然科学版), 2007, 16(1):19-22.
QU G X, HUANG Y J, DONG M S.Reseach development of heme preparation techniques[J].Journal of the Central University for Nationalities (Natural Sciences Edition), 2007, 16(1):19-22.
[10] FISCHER H, ZEILE K.Synthese des Hämatoporphyrins, protoporphyrins und Hämins[J].Justus Liebig’s Annalen Der Chemie, 1929, 468(1):98-116.
[11] ESPINAS N A, KOBAYASHI K, TAKAHASHI S, et al.Evaluation of unbound free heme in plant cells by differential acetone extraction[J].Plant and Cell Physiology, 2012, 53(7):1344-1354.
[12] IN M J, KIM D C, CHAE H J, et al.Effects of degree of hydrolysis and pH on the solubility of heme-iron enriched peptide in hemoglobin hydrolysate[J].Bioscience, Biotechnology, and Biochemistry, 2003, 67(2):365-367.
[13] LUO Z S, LIU N, LAZAR Z, et al.Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity[J].Metabolic Engineering, 2020, 61:344-351.
[14] ROMANOWSKI S, EUSTÁQUIO A S.Synthetic biology for natural product drug production and engineering[J].Current Opinion in Chemical Biology, 2020, 58:137-145.
[15] KANG Z, WANG Y, GU P F, et al.Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose[J].Metabolic Engineering, 2011, 13(5):492-498.
[16] 杨燕, 郑珂, 潘梅, 等.大肠杆菌rhtA缺失对血红素合成的影响[J].微生物学通报, 2019, 46(12):3216-3224.
YANG Y, ZHENG K, PAN M, et al.The effect of rhtA deletion on heme synthesis in Escherichia coli[J].Microbiology China, 2019, 46(12):3216-3224.
[17] 潘梅. 大肠杆菌血红素合成调节及其对血红素过氧化物酶的影响[D].无锡:江南大学, 2020.
PAN M.Regulation of heme synthesis and its effect on heme peroxidase in Escherichia coli[D].Wuxi:Jiangnan University, 2020.
[18] VEGA D E, YOUNG K D.Accumulation of periplasmic enterobactin impairs the growth and morphology of Escherichia coli tolC mutants[J].Molecular Microbiology, 2014, 91(3):508-521.
[19] TATSUMI R, WACHI M.TolC-dependent exclusion of porphyrins in Escherichia coli[J].Journal of Bacteriology, 2008, 190(18):6228-6233.
[20] TURLIN E, HEUCK G, SIMÕES BRANDÃO M I, et al.Protoporphyrin (PPIX) efflux by the MacAB-TolC pump in Escherichia coli[J].Microbiology Open, 2014, 3(6):849-859.
[21] PRANAWIDJAJA S, CHOI S I, LAY B W, et al.Analysis of heme biosynthetic pathways in a recombinant Escherichia coli[J].Journal of Microbiology and Biotechnology, 2015, 25(6):880-886.
[22] 陈丹园, 沈云杰, 杨燕, 等.关键酶基因的过表达与环境因素对大肠杆菌血红素合成的调控[J].食品与发酵工业, 2018, 44(11):7-14.
CHEN D Y, SHEN Y J, YANG Y, et al.Regulation of heme synthesis in Escherichia coli by overexpression of genes for the key enzymes and environmental factors[J].Food and Fermentation Industries, 2018, 44(11):7-14.
[23] DATSENKO K A, WANNER B L.One-step inactivation of chromosomal genes in Escherichia coliK-12 using PCR products[J].Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12):6640-6645.
[24] SASSA S.Sequential induction of heme pathway enzymes during erythroid differentiation of mouse Friend leukemia virus-infected cells[J].Journal of Experimental Medicine, 1976, 143(2):305-315.
[25] 潘梅, 刘爽欣, 唐蕾.谷氨酸代谢调控及hemA过表达促进大肠杆菌血红素合成[J].微生物学通报, 2021, 48(3):701-709.
PAN M, LIU S X, TANG L.Enhancing heme synthesis in Escherichia coli by regulating glutamic acid metabolism and over-expressing hemA[J].Microbiology China, 2021, 48(3):701-709.
[26] 朱子薇, 张健, 王倩, 等.卟啉代谢途径高价值产物及其微生物合成研究进展[J].中国科学:生命科学, 2020, 50(12):1405-1417.
ZHU Z W, ZHANG J, WANG Q, et al.Recent advances in the production of high-value products of porphyrin metabolism pathways and their microbial synthesis[J].Scientia Sinica (Vitae), 2020, 50(12):1405-1417.
文章导航

/