维生素B12是唯一含有金属离子的维生素,其合成途径尤为复杂。大肠杆菌工程菌是生成维生素B12的新菌种。氢咕啉酸作为维生素B12合成途径重要的稳定中间体,通过代谢工程提高大肠杆菌氢咕啉酸的产量具有重要意义。经过不同宿主的对比发现BW25113(DE3)是生产氢咕啉酸的合适宿主。利用CRISPR/Cas9介导的基因组编辑技术将氢咕啉酸生物合成基因在染色体上表达,氢咕啉酸产量提高12倍,达到6.38 mg/L。增加前体尿卟啉原III供应,氢咕啉酸产量再次提高,达到11.61 mg/L。敲除ackA-pta对氢咕啉酸产量提高没有效果。经过引入运动发酵假单胞菌来源的Entner-Doudoroff途径提高还原型烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate,NADPH)水平,1株无抗菌株的氢咕啉酸产量提高到14.60 mg/L。该研究为大肠杆菌高效生产维生素B12奠定了基础。
[1] ROTH J R, LAWRENCE J G, RUBENFIELD M, et al.Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium[J].Journal of Bacteriology, 1993, 175(11):3303-3316.
[2] THAKKAR K, BILLA G.Treatment of vitamin B12 deficiency-methylcobalamine? Cyancobalamine? Hydroxocobalamin? —Clearing the confusion[J].European Journal of Clinical Nutrition, 2015, 69(1):1-2.
[3] MARTENS J H, BARG H, WARREN M J, et al.Microbial production of vitamin B12[J].Applied Microbiology and Biotechnology, 2022, 58(3):275-285.
[4] FANG H, KANG J, ZHANG D W.Microbial production of vitamin B12:A review and future perspectives[J].Microbial Cell Factories, 2017, 16(1):15.
[5] LIU J A, LIU Y F, WU J E, et al.Metabolic profiling analysis of the vitamin B12 producer Propionibacterium freudenreichii[J].MicrobiologyOpen, 2021, 10(3):1199.
[6] DONG H N, LI S, FANG H, et al.A newly isolated and identified vitamin B12 producing strain:Sinorhizobium meliloti 320[J].Bioprocess and Biosystems Engineering, 2016, 39(10):1527-1537.
[7] FANG H, LI D, KANG J, et al.Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12[J].Nature Communications, 2018, 9(1):4917.
[8] LI D, FANG H, GAI Y M, et al.Metabolic engineering and optimization of the fermentation medium for vitamin B12 production in Escherichia coli[J].Bioprocess and Biosystems Engineering, 2020, 43(10):1735-1745.
[9] JIANG P T, FANG H, ZHAO J, et al.Optimization of hydrogenobyrinic acid biosynthesis in Escherichia coli using multi-level metabolic engineering strategies[J].Microbial Cell Factories, 2020, 19(1):118.
[10] KEASLING J D.Synthetic biology and the development of tools for metabolic engineering[J].Metabolic Engineering, 2012, 14(3):189-195.
[11] LEE S Y, KIM H U.Systems strategies for developing industrial microbial strains[J].Nature Biotechnology, 2015, 33(10):1061-1072.
[12] 任俊, 吴赵梅, 陈志炎.“葡萄糖充足-溶解氧浓度周期”组合控制策略强化Schizochytrium sp.S31生产二十二碳六烯酸[J].食品与发酵工业, 2022, 48(18):101-106.
REN J, WU Z M, CHEN Z Y.Enhancing DHA production by Schizochytrium sp.S31 via combinational control strategy of “glucose sufficient-periodic dissolved oxygen concentration operation”[J].Food and Fermentation Industries, 2022, 48(18):101-106.
[13] 牛腾飞, 李江华, 堵国成, 等.微生物法合成N-乙酰氨基葡萄糖及其衍生物的研究进展[J].食品与发酵工业, 2020, 46(1):274-279.
NIU T F, LI J H, DU G C, et al.Research progress on microbiological synthesis of N-acetylglucosamine and its derivatives[J].Food and Fermentation Industries, 2020, 46(1):274-279.
[14] 张大伟, 房欢, 姜平涛, 等.解除PTS依赖碳源对相关启动子阻遏的方法及其应用:中国, CN115125263A[P].2022-09-30.
ZHANG D W, FANG H, JING P T, et al.Methods for removing carbon source dependent inhibition of related promoters from PTS and its application:China, CN115125263A[P].2022-09-30.
[15] LIN D, O'CALLAGHAN C A.Hierarchical modular DNA assembly using MetClo[M].DNA Cloning and Assembly.New York:Humana, 2020:143-159.
[16] SCHÜTZE A, BENNDORF D, PÜTTKER S, et al.The impact of ackA, pta, and ackA-pta mutations on growth, gene expression and protein acetylation in Escherichia coli K-12[J].Frontiers in Microbiology, 2020, 11:233.
[17] ZHAO D D, YUAN S L, XIONG B, et al.Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9[J].Microbial Cell Factories, 2016, 15(1):205.
[18] ZHANG J L, WENG H J, ZHOU Z X, et al.Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli[J].Bioresource Technology, 2019, 274:353-360.
[19] BAKHTIARI N, MIRSHAHI M, BABAEIPOUR V, et al.Down regulation of ackA-pta pathway in Escherichia coli BL21 (DE3):A step toward optimized recombinant protein expression system[J].Jundishapur Journal of Microbiology, 2014, 7(2):e8990.
[20] LIANG S X, CHEN H, LIU J, et al.Rational design of a synthetic Entner-Doudoroff pathway for enhancing glucose transformation to isobutanol in Escherichia coli[J].Journal of Industrial Microbiology & Biotechnology, 2018, 45(3):187-199.
[21] FLAMHOLZ A, NOOR E, BAR-EVEN A, et al.Glycolytic strategy as a tradeoff between energy yield and protein cost[J].PNAS, 2013, 110(24):10039-10044.
[22] WANG Z J, WANG P, LIU Y W, et al.Metabolic flux analysis of the central carbon metabolism of the industrial vitamin B12producing strain Pseudomonas denitrificans using 13C-labeled glucose[J].Journal of the Taiwan Institute of Chemical Engineers, 2012, 43(2):181-187.
[23] NG C Y, FARASAT I, MARANAS C D, et al.Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration[J].Metabolic Engineering, 2015, 29:86-96.
[24] YANG D, PARK S Y, PARK Y S, et al.Metabolic engineering of Escherichia coli for natural product biosynthesis[J].Trends in Biotechnology, 2020, 38(7):745-765.
[25] 张晓云,叶勤.大肠杆菌乙酸产生及其控制研究[J].生物技术通报, 2009(10):66-69.
ZHANG X Y, YE Q.Study on acetate production and its controlling in Escherichia coli[J].Biotechnology Bulletin, 2009(10):66-69.