研究报告

代谢工程改造大肠杆菌生产氢咕啉酸

  • 董宁 ,
  • 房欢 ,
  • 赵莹 ,
  • 姜平涛 ,
  • 赵江华 ,
  • 张同存 ,
  • 张大伟
展开
  • 1(天津科技大学 生物工程学院,天津,300457)
    2(中国科学院天津工业生物技术研究所,低碳合成工程生物学重点实验室,天津,300308)
    3(国家合成生物技术创新中心,天津,300308)
    4(中国科学院大学,北京,300192)
    5(工业发酵微生物教育部重点实验室,天津市工业微生物重点实验室,天津科技大学生物工程学院,天津,300457)
第一作者:硕士研究生(张同存教授和张大伟研究员为共同通信作者,E-mail:tony@tust.edu.cn;zhang_dw@tib.cas.cn)

收稿日期: 2023-02-06

  修回日期: 2023-03-08

  网络出版日期: 2023-11-01

基金资助

国家重点研发计划项目(2021YFC2100700);国家自然科学基金项目(22178372,22208367);中国科学院青年创新促进会项目(2020182)

Metabolic engineering of Escherichia coli for hydrogenobyrinic acid production

  • DONG Ning ,
  • FANG Huan ,
  • ZHAO Ying ,
  • JIANG Pingtao ,
  • ZHAO Jianghua ,
  • ZHANG Tongcun ,
  • ZHANG Dawei
Expand
  • 1(College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China)
    2(Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China)
    3(National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China)
    4(University of Chinese Academy of Sciences, Beijing 300192, China)
    5(Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China)

Received date: 2023-02-06

  Revised date: 2023-03-08

  Online published: 2023-11-01

摘要

维生素B12是唯一含有金属离子的维生素,其合成途径尤为复杂。大肠杆菌工程菌是生成维生素B12的新菌种。氢咕啉酸作为维生素B12合成途径重要的稳定中间体,通过代谢工程提高大肠杆菌氢咕啉酸的产量具有重要意义。经过不同宿主的对比发现BW25113(DE3)是生产氢咕啉酸的合适宿主。利用CRISPR/Cas9介导的基因组编辑技术将氢咕啉酸生物合成基因在染色体上表达,氢咕啉酸产量提高12倍,达到6.38 mg/L。增加前体尿卟啉原III供应,氢咕啉酸产量再次提高,达到11.61 mg/L。敲除ackA-pta对氢咕啉酸产量提高没有效果。经过引入运动发酵假单胞菌来源的Entner-Doudoroff途径提高还原型烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate,NADPH)水平,1株无抗菌株的氢咕啉酸产量提高到14.60 mg/L。该研究为大肠杆菌高效生产维生素B12奠定了基础。

本文引用格式

董宁 , 房欢 , 赵莹 , 姜平涛 , 赵江华 , 张同存 , 张大伟 . 代谢工程改造大肠杆菌生产氢咕啉酸[J]. 食品与发酵工业, 2023 , 49(19) : 44 -52 . DOI: 10.13995/j.cnki.11-1802/ts.035036

Abstract

Vitamin B12 is the only vitamin containing metal ion and its biosynthetic pathway is extremely complex. Engineered Escherichia coli is a new strain for vitamin B12 production. Hydrogenobyrinic acid is an important stable intermediate of vitamin B12 biosynthetic pathway, so it is of great significance to increase the titer of E. coli hydrogenobyrinic acid via metabolic engineering. BW25113 (DE3) was found to be the suitable host for hydrogenobyrinic acid production via comparing various hosts. Hydrogenobyrinic acid titer was increased 12-fold to 6.38 mg/L after expressing the genes involved in hydrogenobyrinic acid biosynthesis on the chromosome via CRISPR/Cas9 mediated genome editing. When the supply of precursor uroporphyrinogen III was increased, the hydrogenobyrinic acid titer was increased further to 11.61 mg/L. Knocking out ackA-pta had no effect on increasing the hydrogenobyrinic acid titer. The hydrogenobyrinic acid titer of an antibiotic-free strain was increased finally to 14.60 mg/L via introducing the Entner-Doudoroff pathway from Zymomonas mobilis to improve NADPH level. The study laid the foundation for efficient production of vitamin B12 in E. coli.

参考文献

[1] ROTH J R, LAWRENCE J G, RUBENFIELD M, et al.Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium[J].Journal of Bacteriology, 1993, 175(11):3303-3316.
[2] THAKKAR K, BILLA G.Treatment of vitamin B12 deficiency-methylcobalamine? Cyancobalamine? Hydroxocobalamin? —Clearing the confusion[J].European Journal of Clinical Nutrition, 2015, 69(1):1-2.
[3] MARTENS J H, BARG H, WARREN M J, et al.Microbial production of vitamin B12[J].Applied Microbiology and Biotechnology, 2022, 58(3):275-285.
[4] FANG H, KANG J, ZHANG D W.Microbial production of vitamin B12:A review and future perspectives[J].Microbial Cell Factories, 2017, 16(1):15.
[5] LIU J A, LIU Y F, WU J E, et al.Metabolic profiling analysis of the vitamin B12 producer Propionibacterium freudenreichii[J].MicrobiologyOpen, 2021, 10(3):1199.
[6] DONG H N, LI S, FANG H, et al.A newly isolated and identified vitamin B12 producing strain:Sinorhizobium meliloti 320[J].Bioprocess and Biosystems Engineering, 2016, 39(10):1527-1537.
[7] FANG H, LI D, KANG J, et al.Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12[J].Nature Communications, 2018, 9(1):4917.
[8] LI D, FANG H, GAI Y M, et al.Metabolic engineering and optimization of the fermentation medium for vitamin B12 production in Escherichia coli[J].Bioprocess and Biosystems Engineering, 2020, 43(10):1735-1745.
[9] JIANG P T, FANG H, ZHAO J, et al.Optimization of hydrogenobyrinic acid biosynthesis in Escherichia coli using multi-level metabolic engineering strategies[J].Microbial Cell Factories, 2020, 19(1):118.
[10] KEASLING J D.Synthetic biology and the development of tools for metabolic engineering[J].Metabolic Engineering, 2012, 14(3):189-195.
[11] LEE S Y, KIM H U.Systems strategies for developing industrial microbial strains[J].Nature Biotechnology, 2015, 33(10):1061-1072.
[12] 任俊, 吴赵梅, 陈志炎.“葡萄糖充足-溶解氧浓度周期”组合控制策略强化Schizochytrium sp.S31生产二十二碳六烯酸[J].食品与发酵工业, 2022, 48(18):101-106.
REN J, WU Z M, CHEN Z Y.Enhancing DHA production by Schizochytrium sp.S31 via combinational control strategy of “glucose sufficient-periodic dissolved oxygen concentration operation”[J].Food and Fermentation Industries, 2022, 48(18):101-106.
[13] 牛腾飞, 李江华, 堵国成, 等.微生物法合成N-乙酰氨基葡萄糖及其衍生物的研究进展[J].食品与发酵工业, 2020, 46(1):274-279.
NIU T F, LI J H, DU G C, et al.Research progress on microbiological synthesis of N-acetylglucosamine and its derivatives[J].Food and Fermentation Industries, 2020, 46(1):274-279.
[14] 张大伟, 房欢, 姜平涛, 等.解除PTS依赖碳源对相关启动子阻遏的方法及其应用:中国, CN115125263A[P].2022-09-30.
ZHANG D W, FANG H, JING P T, et al.Methods for removing carbon source dependent inhibition of related promoters from PTS and its application:China, CN115125263A[P].2022-09-30.
[15] LIN D, O'CALLAGHAN C A.Hierarchical modular DNA assembly using MetClo[M].DNA Cloning and Assembly.New York:Humana, 2020:143-159.
[16] SCHÜTZE A, BENNDORF D, PÜTTKER S, et al.The impact of ackA, pta, and ackA-pta mutations on growth, gene expression and protein acetylation in Escherichia coli K-12[J].Frontiers in Microbiology, 2020, 11:233.
[17] ZHAO D D, YUAN S L, XIONG B, et al.Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9[J].Microbial Cell Factories, 2016, 15(1):205.
[18] ZHANG J L, WENG H J, ZHOU Z X, et al.Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli[J].Bioresource Technology, 2019, 274:353-360.
[19] BAKHTIARI N, MIRSHAHI M, BABAEIPOUR V, et al.Down regulation of ackA-pta pathway in Escherichia coli BL21 (DE3):A step toward optimized recombinant protein expression system[J].Jundishapur Journal of Microbiology, 2014, 7(2):e8990.
[20] LIANG S X, CHEN H, LIU J, et al.Rational design of a synthetic Entner-Doudoroff pathway for enhancing glucose transformation to isobutanol in Escherichia coli[J].Journal of Industrial Microbiology & Biotechnology, 2018, 45(3):187-199.
[21] FLAMHOLZ A, NOOR E, BAR-EVEN A, et al.Glycolytic strategy as a tradeoff between energy yield and protein cost[J].PNAS, 2013, 110(24):10039-10044.
[22] WANG Z J, WANG P, LIU Y W, et al.Metabolic flux analysis of the central carbon metabolism of the industrial vitamin B12producing strain Pseudomonas denitrificans using 13C-labeled glucose[J].Journal of the Taiwan Institute of Chemical Engineers, 2012, 43(2):181-187.
[23] NG C Y, FARASAT I, MARANAS C D, et al.Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration[J].Metabolic Engineering, 2015, 29:86-96.
[24] YANG D, PARK S Y, PARK Y S, et al.Metabolic engineering of Escherichia coli for natural product biosynthesis[J].Trends in Biotechnology, 2020, 38(7):745-765.
[25] 张晓云,叶勤.大肠杆菌乙酸产生及其控制研究[J].生物技术通报, 2009(10):66-69.
ZHANG X Y, YE Q.Study on acetate production and its controlling in Escherichia coli[J].Biotechnology Bulletin, 2009(10):66-69.
文章导航

/