研究报告

冷库内堆码方式对鲐鱼冻藏品质的影响

  • 王文洁 ,
  • 沈紫斌 ,
  • 陈云云 ,
  • 徐霞 ,
  • 虞舟 ,
  • 丁玉庭 ,
  • 周绪霞
展开
  • 1(浙江工业大学 食品科学与工程学院,浙江 杭州,310014)
    2(浙江省深蓝渔业资源高效开发利用重点实验室,浙江 杭州,310014)
    3(国家远洋水产品加工技术研发分中心(杭州),浙江 杭州,310014)
    4(中国水产舟山海洋渔业有限公司,浙江 舟山,325400)
    5(舟山汇丰冷藏物流发展有限公司,浙江 舟山,316102)
第一作者:博士,副研究员(周绪霞教授为通信作者,E-mail:xzhou@zjut.edu.cn)

收稿日期: 2022-07-23

  修回日期: 2022-08-22

  网络出版日期: 2023-11-20

基金资助

“十三五”国家重点研发计划重点专项(2019YFD0901604)

Effect of stacking methods on frozen storage quality of mackerel in a freezer room

  • WANG Wenjie ,
  • SHEN Zibin ,
  • CHEN Yunyun ,
  • XU Xia ,
  • YU Zhou ,
  • DING Yuting ,
  • ZHOU Xuxia
Expand
  • 1(College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China)
    2(Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China)
    3(National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China)
    4(China Aquatic Products Zhoushan Marine Fisheries Corporation, Zhoushan 325400, China)
    5(Aquatic product warehousing transshipment company, Zhoushan 316102, China)

Received date: 2022-07-23

  Revised date: 2022-08-22

  Online published: 2023-11-20

摘要

该文研究了不同堆码方式下冷库的流场变化对鲐鱼冻藏品质的影响,3种堆码方式包括堆码高度1.060 m距后壁1.040 m(T1)、堆码高度2.260 m距后壁1.040 m(T2)和堆码高度2.260 m距后壁2.005 m(T3)。实验采用计算流体力学(computational fluid dynamics,CFD)分析了不同堆码方式下鲐鱼的流场分布差异,并比较了鱼肉的干耗率、硫代巴比妥酸值、蛋白降解变性程度、肌肉组织微观结构和水分分布情况。CFD模拟结果表明,3组贮藏位置的流场分布存在差异,温度场分布差异不显著,气流场分布差异显著,表面流速大小为T2T3T1;其中流速最大的组T2鱼肉鲜度最差,肌肉组织结构破坏严重;主成分分析结果显示,3组综合得分为T1T3T2,证明流速越大的位置鱼肉劣变越严重。研究结果表明堆码方式会影响库内的流场分布,流速小的位置能有效延缓鲐鱼品质的劣变,可为延长食品货架期提供依据。

本文引用格式

王文洁 , 沈紫斌 , 陈云云 , 徐霞 , 虞舟 , 丁玉庭 , 周绪霞 . 冷库内堆码方式对鲐鱼冻藏品质的影响[J]. 食品与发酵工业, 2023 , 49(20) : 23 -30 . DOI: 10.13995/j.cnki.11-1802/ts.033079

Abstract

This paper studied the effect of flow field changes in cold storage on the frozen quality of mackerel under different stacking modes, the three stacking methods included a stacking height of 1.060 m near the back wall of 1.040 m (T1), stacking height of 2.260 m near the back wall of 1.040 m (T2), and stacking height 2.260 m near the back wall of 2.005 m (T3). In the experiment, computational fluid dynamics (CFD) was applied to analyze the differences in the flow field distribution of mackerel under different stacking methods, and the weight loss rate, thiobarbituric acid value, degree of protein degradation and denaturation, muscle tissue microstructure images, and water distribution were compared among the three groups. CFD simulation showed that the differences in temperature fields among the three groups were not significant, but the airflow fields were significant. The surface flow velocity of mackerel in group T2 was the largest, followed by T3 and T1, and T2 had the worst freshness and severely damaged muscle tissue structure. Principal component analysis showed that the comprehensive score of the three groups was T1 > T3 > T2, which proved that the fish quality deteriorated more seriously at the position of high flow rate. This study found that the stacking mode had an effect on the flow field distribution in cold storage, and the location with a low flow rate could effectively delay the deterioration of the mackerel quality, which could provide a basis for prolonging the shelf life of food.

参考文献

[1] CHEN M, ZHAO J, ZHANG Z B, et al.Influencing factors of thermal performance of small-size vaccine cold storage:An experiment-based parametric study[J].Journal of Energy Storage, 2022, 51:104496.
[2] PRAEGER U, JEDERMANN R, SELLWIG M, et al.Airflow distribution in an apple storage room[J].Journal of Food Engineering, 2020, 269:109746.
[3] JAMES S, JAMES C.Chilled Foods[M].Amsterdam:Elsevier, 2008:375-403.
[4] 谢晶, 王金锋, 缪晨, 等.基于三维CFD预测大型冷库内不同货物摆设方式对气流的影响[C].第八届全国食品冷藏链大会论文集.北京, 2012: 140-145.
[5] 曾晰. 火龙果堆码方式对冷藏库内气体流场分布的影响[J].农技服务, 2019, 36(1):37-40;42.
ZENG X.Influence of pitaya stacking method on gas flow field distribution in cold storage[J].Agricultural Technology Service, 2019, 36(1):37-40;42.
[6] HAO X H, JU Y L.Simulation and analysis on the flow field of the low temperature mini-type cold store[J].Heat and Mass Transfer, 2011, 47(7):771-775.
[7] 孙海亭, 周轲, 杨艳青, 等.利用CFD模型研究苹果冷藏库内的空气流动[J].保鲜与加工, 2014, 14(4):27-33;39.
SUN H T, ZHOU K, YANG Y Q, et al.Airflow simulation in apple cold storage using CFD model[J].Storage and Process, 2014, 14(4):27-33;39.
[8] CHOURASIA M K, GOSWAMI T K.Simulation of effect of stack dimensions and stacking arrangement on cool-down characteristics of potato in a cold store by computational fluid dynamics[J].Biosystems Engineering, 2007, 96(4):503-515.
[9] 胡耀华, 蒋国振, 熊来怡, 等.猕猴桃冷库内流场的CFD模拟[J].农机化研究, 2012, 34(5):155-159.
HU Y H, JIANG G Z, XIONG L Y, et al.Flow field simulation of cold storehouse for kiwi fruit based on CFD[J].Journal of Agricultural Mechanization Research, 2012, 34(5):155-159.
[10] 王钰, 倪继龙, 李敏杰, 等.鲐鱼低温冻藏过程中脂肪氧化特性[J].肉类研究, 2021, 35(6):63-68.
WANG Y, NI J L, LI M J, et al.Oxidation characteristics of lipids in mackerel during cryopreservation[J].Meat Research, 2021, 35(6):63-68.
[11] 汪经邦, 谢晶, 刘大勇.暗纹东方鲀低温贮藏期间水分、质地和蛋白质的变化规律[J].食品科学, 2020, 41(21):213-221.
WANG J B, XIE J, LIU D Y.Changes in water mobility, texture and protein structure in Takifugu obscurus during low temperature storage[J].Food Science, 2020, 41(21):213-221.
[12] 李秀霞, 刘孝芳, 刘宏影, 等.超声波辅助冷冻与低温速冻对海鲈鱼冰晶形态及冻藏期间鱼肉肌原纤维蛋白结构的影响[J].中国食品学报,2021, 21(10):169-176.
LI X X, LIU X F, LIU H Y, et al.Effects of ultrasound-assisted freezing and cryogenic quick freezing on ice crystal morphology and myofibrin structure of sea bass (Lateolabrax japonicus) during frozen storage[J].Journal of Chinese Institute of Food Science and Technology,2021, 21(10):169-176.
[13] SRIKET P, LA-ONGNUAL T.Quality changes and discoloration of basa (Pangasius bocourti) fillet during frozen storage[J].Journal of Chemistry, 2018, 2018:1-7.
[14] SHANG S, WU B C, FU B S, et al.Enzyme treatment-induced tenderization of puffer fish meat and its relation to physicochemical changes of myofibril protein[J].LWT, 2022, 155:112891.
[15] KAALE L D, EIKEVIK T M.A histological study of the microstructure sizes of the red and white muscles of Atlantic salmon (Salmo salar) fillets during superchilling process and storage[J].Journal of Food Engineering, 2013, 114(2):242-248.
[16] 霍晓娜. 低温贮藏过程中食品干耗问题的研究[J].肉类研究, 2009, 23(4):10-12;34.
HUO X N.Research on the weight loss of foods in refrigerated condition[J].Meat Research, 2009, 23(4):10-12;34.
[17] PHIMOLSIRIPOL Y, SIRIPATRAWAN U, CLELAND D J.Weight loss of frozen bread dough under isothermal and fluctuating temperature storage conditions[J].Journal of Food Engineering, 2011, 106(2):134-143.
[18] EMRAGI E, SATHUVALLI V, JAYANTY S S.The impact of ventilation conditions on the quality of Rio Grande Russet tubers during long-term cold storage[J].Journal of Agriculture and Food Research, 2021, 3:100095.
[19] KHOSHNOUDI-NIA S, MOOSAVI-NASAB M.Comparison of various chemometric analysis for rapid prediction of thiobarbituric acid reactive substances in rainbow trout fillets by hyperspectral imaging technique[J].Food Science & Nutrition, 2019, 7(5):1875-1883.
[20] MA T T, WANG Q, WEI P Y, et al.EGCG-gelatin biofilm improved the protein degradation, flavor and micromolecule metabolites of tilapia fillets during chilled storage[J].Food Chemistry, 2022, 375:131662.
[21] 陈晓楠, 赵金丽, 张宾, 等.低温冻藏过程中鲐鱼肌肉蛋白质氧化特性研究[J].包装工程, 2020, 41(17):38-45.
CHEN X N, ZHAO J L, ZHANG B, et al.Oxidation of muscle protein in mackerel during cryopreservation[J].Packaging Engineering, 2020, 41(17):38-45.
[22] RAMIAREZ J A, MARTIAN-POLO M O, BANDMAN E.Fish myosin aggregation as affected by freezing and initial physical state[J].Journal of Food Science, 2000, 65(4):556-560.
[23] 胡远辉, 廖慧琦, 陆益钡, 等.液氮冻结对养殖大黄鱼肌原纤维蛋白结构的影响[J].食品安全质量检测学报, 2020, 11(22):8260-8266.
HU Y H, LIAO H Q, LU Y B, et al.Effects of liquid nitrogen freezing nitrogen on the structure of myofibrillar protein in cultured large yellow croaker (Pseudosciaena crocea)[J].Journal of Food Safety & Quality Inspection, 2020, 11(22):8260-8266.
[24] LI F F, DU X, REN Y M, et al.Impact of ice structuring protein on myofibrillar protein aggregation behaviour and structural property of quick-frozen patty during frozen storage[J].International Journal of Biological Macromolecules, 2021, 178:136-142.
[25] 孙圳, 杨方威, 李侠, 等.ATR-FTIR分析冻结—解冻后的牛肉蛋白二级结构变化[J].光谱学与光谱分析, 2016, 36(11):3542-3546.
SUN Z, YANG F W, LI X, et al.Effects of freezing and thawing treatments on beef protein secondary structure analyzed with ATR-FTIR[J].Spectroscopy and Spectral Analysis, 2016, 36(11):3542-3546.
[26] AURSAND I G, VELIYULIN E, BÖCKER U, et al.Water and salt distribution in Atlantic salmon (Salmo salar) studied by low-field 1H NMR, 1H and 23Na MRI and light microscopy:Effects of raw material quality and brine salting[J].Journal of Agricultural and Food Chemistry, 2009, 57(1):46-54.
[27] 孙慧琳, 代媛媛, 孟兰奇, 等.牛肉低温储藏过程中水分迁移与蛋白质氧化的相关性研究[J].保鲜与加工, 2021, 21(5):28-33;46.
SUN H L, DAI Y Y, MENG L Q, et al.Correlation research between water migration and protein oxidation of beef under cryopreservation[J].Storage and Process, 2021, 21(5):28-33;46.
[28] 汪经邦, 李沛韵, 谢晶, 等.不同贮藏温度对暗纹东方鲀水分迁移、质构和色泽的影响及其货架期预测[J].食品与发酵工业, 2020, 46(6):73-81.
WANG J B, LI P Y, XIE J, et al.Effects of different temperatures on moisture migration,texture and color of Takifugu obscures during storage and the prediction of shelf-life[J].Food and Fermentation Industries, 2020, 46(6):73-81.
[29] WANG X, XIE X R, ZHANG T, et al.Effect of edible coating on the whole large yellow croaker (Pseudosciaena crocea) after a 3-day storage at -18 ℃:With emphasis on the correlation between water status and classical quality indices[J].LWT, 2022, 163:113514.
文章导航

/