为了探究酶表面氨基酸残基对催化性能的影响,对麦氏交替单胞菌(Alteromonas macleodii)的木聚糖酶XynZT-2进行分子改造。基于计算机模拟,预测了潜在的有益突变体E49F,通过定点突变构建突变酶基因xynZT-2E49F,并将原酶与突变酶基因转化大肠杆菌BL21(DE3)异源表达。酶学性质分析发现,突变酶XynEF最适温度为70 ℃,相比原酶XynZT-2提高了25 ℃,酶活力提高了6.4倍。酶动力学分析发现,突变酶的kcat/Km值相比原酶提高了10.1倍,突变酶的Km值明显下降,对底物的亲和力增强。通过酶与底物分子对接,揭示了底物在突变酶催化活性口袋内的结合构象以及酶活力提高的潜在原因。为GH43家族木聚糖酶的分子改造研究提供了基础。
[1] LONG L F, ZHANG Y B, REN H Y, et al.Recombinant expression of Aspergillus niger GH10 endo-xylanase in Pichia pastoris by constructing a double-plasmid co-expression system[J].Journal of Chemical Technology & Biotechnology, 2020, 95(3):535-543.
[2] TILL M, GOLDSTONE D, CARD G, et al.Structural analysis of the GH43 enzyme Xsa43E from Butyrivibrio proteoclasticus[J].Acta Crystallographica, Section F, Structural Biology Communications, 2014, 70(Pt9):1193-1198.
[3] NOROUZI S, BIRGANI N H, MAGHAMI P, et al.Improvement of PersiXyn2 activity and stability in presence of trehalose and proline as a natural osmolyte[J].International Journal of Biological Macromolecules, 2020, 163:348-357.
[4] 刘国锋. 大肠杆菌工程菌产木聚糖酶工艺优化及酶学性质研究[J].食品与机械, 2018, 34(2):25-30.
LIU G F.Study on technology and enzymatic property of xylanase produced from engineered Escherichia coli[J].Food and Machinery, 2018, 34(2):25-30.
[5] 张燕青, 张超群, 王浩猛.木聚糖酶的分子改造方法及其工业应用研究现状[J].中国酿造, 2018, 37(1):25-29.
ZHANG Y Q, ZHANG C Q, WANG H M.Research status of xylanase molecular modification and industrial application[J].China Brewing, 2018, 37(1):25-29.
[6] DILEEPA M S, EUNYOUNG J, AMARIN H S, et al.Characterization of glycoside hydrolase family 11 xylanase from Streptomyces sp.strain J103;its synergetic effect with acetyl xylan esterase and enhancement of enzymatic hydrolysis of lignocellulosic biomass[J].Microbial Cell Factories, 2021, 20(1):129.
[7] KONG H Y, JIANG X, WANG Y, et al.Fusion expression of β-mannanaseman5A and xylanase Tlxyn11B in Pichia pastoris[J].Chinese Journal of Biotechnology, 2020, 36(9):1849-1858.
[8] YANG S, YANG B, DUAN C, et al.Applications of enzymatic technologies to the production of high-quality dissolving pulp:A review[J].Bioresource Technology, 2019, 281:440-448.
[9] 任春霖, 董红丽, 王风芹, 等.低聚木糖生产技术及其对动物益生作用研究进展[J].食品与发酵工业, 2021, 47(9):293-298.
REN C L, DONG H L, WANG F Q, et al.Research progress of xylooligosaccharides production technology and its prebiotic effect on animals[J].Food and Fermentation Industries, 2021, 47(9):293-298.
[10] 李青飞, 刘越, 言行, 等.高温木聚糖酶Pthxyn酶学性质及其在啤酒酿造中的应用[J].食品科学, 2023,44(10): 181-187.
LI Q F, LIU Y, YAN X, et al.Enzymatic properties of thermophilic xylanase Pthxyn and its application in beer brewing[J].Food Science, 2023,44(10): 181-187.
[11] CAYETANO-CRUZ M, CARO-GÓMEZ L A, PLASCENCIA-ESPINOSA M, et al.Effect of the single mutation N9Y on the catalytical properties of xylanase Xyn11A from Cellulomonas uda:A biochemical and molecular dynamic simulation analysis[J].Bioscience, Biotechnology, and Biochemistry, 2021, 85(9):1971-1985.
[12] SUZUKI M, TAKITA T, KUWATA K, et al.Insight into the mechanism of thermostabilization of GH10 xylanase from Bacillus sp.strain TAR-1 by the mutation of S92 to E[J].Bioscience, Biotechnology, and Biochemistry, 2021, 85(2):386-390.
[13] ZHENG H C, LIU Y H, SUN M Z, et al.Improvement of alkali stability and thermostability of Paenibacillus campinasensis Family-11 xylanase by directed evolution and site-directed mutagenesis[J].Journal of Industrial Microbiology & Biotechnology, 2014, 41(1):153-162.
[14] 李秀婷, 朱唯嘉, 吴秋华, 等.二硫键影响GH11木聚糖酶稳定性研究进展[J].食品科学技术学报, 2022, 40(5):14-27.
LI X T, ZHU W J, WU Q H, et al. Research progress on the effect of disulfide bonds on the stability of GH11 xylanase. Journal of Food Science and Technology, 2022, 40(5):14-27.
[15] SAMBROOK J,RUSSELL D W.分子克隆实验指南. 黄培堂等译. 北京: 科学出版社, 2002: 622-666.
SAMBROOK J,RUSSELL D W. Guidelines for Molecular Cloning Experiments. HUANG P T translate. The third edition. Beijing: Science Press, 2002: 622-666.
[16] ZOUARI AYADI D, HMIDA SAYARI A, BEN HLIMA H, et al.Improvement of Trichoderma reesei xylanase Ⅱ thermal stability by serine to threonine surface mutations[J].International Journal of Biological Macromolecules, 2015, 72:163-170.
[17] BIASINI M, BIENERT S, WATERHOUSE A, et al.SWISS-MODEL:Modelling protein tertiary and quaternary structure using evolutionary information[J].Nucleic Acids Research, 2014, 42(W1):W252-W258.
[18] MROUEH M, ARUANNO M, BORNE R, et al.The xyl-doc gene cluster of Ruminiclostridium cellulolyticum encodes GH43- and GH62-α-l-arabinofuranosidases with complementary modes of action[J].Biotechnology for Biofuels, 2019, 12:144.
[19] YOKOYAMA K, UTSUMI H, NAKAMURA T, et al.Screening for improved activity of a transglutaminase from Streptomyces mobaraensis created by a novel rational mutagenesis and random mutagenesis[J].Applied Microbiology and Biotechnology, 2010, 87(6):2087-2096.
[20] 任蕊蕊, 刘松, 李江华, 等.分子改造提高谷氨酰胺转氨酶的催化活性[J].食品与发酵工业, 2018, 44(9):9-14.
REN R R, LIU S, LI J H, et al.Improved catalytic activity of transglutaminase through molecular modification[J].Food and Fermentation Industries, 2018, 44(9):9-14.
[21] NOEY E L, TIBREWAL N, JIMÉNEZ-OSÉS G, et al.Origins of stereoselectivity in evolved ketoreductases[J].Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(51):E7065-E7072.
[22] ZHANG X, LI W, PAN L X, et al.Improving the thermostability of alginate lyase FlAlyA with high expression by computer-aided rational design for industrial preparation of alginate oligosaccharides[J].Frontiers in Bioengineering and Biotechnology, 2022, 10:1011273.
[23] LIU Z Z, WANG Y F, LIU S H, et al.Boosting the heterologous expression of d-allulose 3-epimerase in Bacillus subtilis through protein engineering and catabolite-responsive element box engineering[J].Journal of Agricultural and Food Chemistry, 2022, 70(38):12128-12134.