[1] WU F F, HUANG H H. Surface morphology and protective effect of Hericium erinaceus polysaccharide on cyclophosphamide-induced immunosuppression in mice[J]. Carbohydrate Polymers, 2021, 251:116930.
[2] YANG Y, YE H Q, ZHAO C H, et al. Value added immunoregulatory polysaccharides of Hericium erinaceus and their effect on the gut microbiota[J]. Carbohydrate Polymers, 2021, 262:117668.
[3] 杨雪, 张海悦, 张鑫, 等. 猴头菇多糖对小鼠抗疲劳作用研究[J]. 食品工业科技, 2015, 36(13):368-370;375.
YANG X, ZHANG H Y, ZHANG X, et al. Anti-fatigue effects of polysaccharides from Hericium erinaceus in mice[J]. Science and Technology of Food Industry, 2015, 36(13):368-370;375.
[4] 罗青, 杨玉珍, 王国霞. 灵芝与猴头菇发酵液的抑菌性测定[J]. 现代牧业, 2017, 1(3):34-36.
LUO Q, YANG Y Z, WANG G X. Determination of antimicrobial activity of Ganoderma lucidum and Hericium erinaceus[J]. Modern Animal Husbandry, 2017, 1(3):34-36.
[5] WANG M X, GAO Y, XU D D, et al. A polysaccharide from cultured mycelium of Hericium erinaceus and its anti-chronic atrophic gastritis activity[J]. International Journal of Biological Macromolecules, 2015, 81:656-661.
[6] TIAN B M, GENG Y, XU T, et al. Digestive characteristics of Hericium erinaceus polysaccharides and their positive effects on fecal microbiota of male and female volunteers during in vitro fermentation[J]. Frontiers in Nutrition, 2022, 9: 858585.
[7] CHANG C H, CHEN Y, YEW X X, et al. Improvement of erinacine A productivity in Hericium erinaceus mycelia and its neuroprotective bioactivity against the glutamate-insulted apoptosis[J]. LWT-Food Science and Technology, 2016, 65:1100-1108.
[8] WOLTERS N, SCHEMBECKER G, MERZ J. Erinacine C: A novel approach to produce the secondary metabolite by submerged cultivation of Hericium erinaceus[J]. Fungal Biology, 2015, 119(12):1334-1344.
[9] ZHU X X, ZHANG Z L, YANG X, et al. RETRACTED: Improvement of extraction from Hericium erinaceus on the gut-brain axis in AD-like mice[J]. Brain Research, 2022, 1793:148038.
[10] YANSHREE, YU W S, FUNG M L, et al. The monkey head mushroom and memory enhancement in Alzheimer’s disease[J]. Cells, 2022, 11(15):2284.
[11] YANG S Y, FANG C J, CHEN Y W, et al. Hericium erinaceus Mycelium ameliorates in vivo progression of osteoarthritis[J]. Nutrients, 2022, 14(13):2605.
[12] RODA E, RATTO D, DE DE LUCA F, et al. Searching for a longevity food, we bump into Hericium erinaceus primordium rich in ergothioneine: The “longevity vitamin” improves locomotor performances during aging[J]. Nutrients, 2022, 14(6):1177.
[13] BAKRATSAS G, POLYDERA A, KATAPODIS P, et al. Recent trends in submerged cultivation of mushrooms and their application as a source of nutraceuticals and food additives[J]. Future Foods, 2021, 4:100086.
[14] 俞嘉卿, 邱涵, 程新, 等. 诱导子对植物次生代谢产物积累的影响研究进展[J]. 生物灾害科学, 2022, 45(3): 255-265.
YU J Q, QIU H, CHENG X, et al. Research progress in effects of elicitors on the accumulation of secondary metabolites in plants[J]. Biological Disaster Science, 2022, 45(3): 255-265.
[15] 吴清山. 猴头菇菌丝体诱变提高多糖产量的培养基优化试验[J]. 北方园艺, 2015(21):146-149.
WU Q S. Medium optimization test of improving polysaccharide yield by Hericium mycelium mutation[J]. Northern Horticulture, 2015(21):146-149.
[16] 李艳红, 李莉. 原生质体紫外诱变选育猴头菌新菌株的研究[J]. 食用菌, 2006, 28(5):18-19.
LI Y H, LI L. Study on breeding new Hericium erinaceus strain by protoplast ultraviolet mutation[J]. Edible Fungi, 2006, 28(5):18-19.
[17] 张帅, 程昊, 邱彩霞, 等. 超声波诱变对猴头菇粗多糖的影响[J]. 食品与发酵工业, 2020, 46(2):126-130.
ZHANG S, CHENG H, QIU C X, et al. Effect of ultrasonic mutation on crude polysaccharide of Hericium erinaceus[J]. Food and Fermentation Industries, 2020, 46(2):126-130.
[18] 宋甜甜, 吴迪, 张赫男, 等. ARTP诱变猴头菌株的发酵菌丝体多糖理化性质及体外免疫活性[J]. 菌物学报, 2018, 37(6):794-804.
SONG T T, WU D, ZHANG H N, et al. Physicochemical properties and immunological activities in vitro of mycelial polysaccharides from Hericium erinaceus mutants induced by atmospheric and room temperature plasma[J]. Mycosystema, 2018, 37(6):794-804.
[19] 王楠, 任大明, 龚涛, 等. 60Co-γ射线辐照诱变尖端菌丝选育猴头菌多糖高产菌株[J]. 中国食用菌, 2005,24(6):37-39.
WANG N, REN D M, GONG T, et al. Screening of high polysaccharide yield strain of Hericium erinaceus by 60Co-gamma irradiation[J]. Edible Fungi of China, 2005,24(6):37-39.
严涛, 李冠, 曾宪贤. N+离子注入技术选育猴头菌优良菌株[J]. 食品工业科技, 2007, 28(3):109-110; 113.
YAN T, LI G, ZENG X X. N+离子注入技术选育猴头菌优良菌株[J]. Science and Technology of Food Industry, 2007, 28(3):109-110; 113.
[21] 谭一罗, 苏文英, 任立凯, 等. N+注入技术选育猴头菇菌株[J]. 浙江农业科学, 2022, 63(1):83-85;93.
TAN Y L, SU W Y, REN L K, et al. Breeding of Hericium erinaceus strain by N+ implantation technology[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(1):83-85;93.
[22] MAO P, WYRICK J J, ROBERTS S A, et al. UV-induced DNA damage and mutagenesis in chromatin[J]. Photochemistry and Photobiology, 2017, 93(1):216-228.
[23] 杨兆民, 张璐. 辐射诱变技术在农业育种中的应用与探析[J]. 基因组学与应用生物学, 2011, 30(1):87-91.
YANG Z M, ZHANG L. Radiation mutation breeding in agriculture technology application and analysis[J]. Genomics and Applied Biology, 2011, 30(1):87-91.
[24] GONG M, ZHANG H N, WU D, et al. Key metabolism pathways and regulatory mechanisms of high polysaccharide yielding in Hericium erinaceus[J]. BMC Genomics, 2021, 22(1): 160.
[25] LI W, MA H L, HE R H, et al. Prospects and application of ultrasound and magnetic fields in the fermentation of rare edible fungi[J]. Ultrasonics Sonochemistry, 2021, 76:105613.
[26] 杨小冲, 陈忠军. 新型物理诱变技术在微生物育种中的应用进展[J]. 食品工业, 2017, 38(3):242-245.
YANG X C, CHEN Z J. Application progress of new microorganism physical mutation breeding technology[J]. The Food Industry, 2017, 38(3):242-245.
[27] 杨珊, 杨焱, 李巧珍, 等. 常压室温等离子体诱变筛选高产多糖猴头菌株的研究[J]. 上海农业学报, 2019, 35(5):6-11.
YANG S, YANG Y, LI Q Z, et al. Screening of high-yield polysaccharide Hericium erinareus by atmospheric and room temperature plasma mutagenesis[J]. Acta Agriculturae Shanghai, 2019, 35(5):6-11.
[28] 李欢琴, 王文磊, 王昭凯, 等. 低能离子束生物技术的应用[J]. 氨基酸和生物资源, 2016, 38(2):1-6.
LI H Q, WANG W L, WANG Z K, et al. Application of low energy ion beam biotechnology[J]. Amino Acids & Biotic Resources, 2016, 38(2):1-6.
[29] MALINOWSKA E, KRZYCZKOWSKI W, APIENIS G, et al. Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceum: Optimization using a central composite rotatable design (CCRD)[J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36(12):1513-1527.
[30] 汪敬健, 温鲁, 翁梁, 等. 不同碳、氮源对猴头菌菌丝体多糖含量的影响[J]. 食品科学, 2010, 31(1):149-151.
WANG J J, WEN L, WENG L, et al. Effects of different carbon and nitrogen sources on content of polysaccharide in liquid submerged-fermented mycelia and broth of Hericium erinaceus[J]. Food Science, 2010, 31(1):149-151.
[31] 信文娟, 肖毓, 董调亚, 等. 猴头菌深层发酵培养基筛选[J]. 食品与发酵科技, 2019, 55(3):64-67; 110.
XIN W J, XIAO Y, DONG D Y, et al. Selecting culture medium of Hericium erinaceusin in deep fermentation[J]. Food and Fermentation Sciences & Technology, 2019, 55(3):64-67; 110.
[32] 张筱梅, 朱维红, 苗晓燕. 猴头菌多糖罐批发酵种子培养及发酵条件优化[J]. 中国食用菌, 2012, 31(2):22-25.
ZHANG X M, ZHU W H, MIAO X Y. Cultivation of seeds and optimization of conditions for batch fermentation of Hericium erinaceus polysaccharide[J]. Edible Fungi of China, 2012, 31(2):22-25.
[33] 万宁威, 雷帮星, 何劲, 等. 猴头菌液体发酵产多糖、核苷、萜类工艺优化及其抗氧化活性[J]. 食品工业科技, 2022, 43(2):233-240.
WAN N W, LEI B X, HE J, et al. Optimization of polysaccharides, nucleosides and terpenes production from Hericium erinaceus by liquid fermentation and its antioxidant activity[J]. Science and Technology of Food Industry, 2022, 43(2):233-240.
[34] LI I C, LEE L Y, TZENG T T, et al. Neurohealth properties of Hericium erinaceus mycelia enriched with erinacines[J]. Behavioural Neurology, 2018, 2018:5802634.
[35] LU C C, HUANG W S, LEE K F, et al. Inhibitory effect of Erinacines A on the growth of DLD-1 colorectal cancer cells is induced by generation of reactive oxygen species and activation of p70S6K and p21[J]. Journal of Functional Foods, 2016, 21:474-484.
[36] KRZYCZKOWSKI W, MALINOWSKA E, HEROLD F. Erinacine A biosynthesis in submerged cultivation of Hericium erinaceum: Quantification and improved cultivation[J]. Engineering in Life Sciences, 2010, 10(5):446-457.
[37] LI I C, CHEN Y L, LEE L Y, et al. Evaluation of the toxicological safety of erinacine A-enriched Hericium erinaceus in a 28-day oral feeding study in Sprague-Dawley rats[J]. Food and Chemical Toxicology, 2014, 70:61-67.
[38] WOLTERS N, SCHABRONATH C, SCHEMBECKER G, et al. Efficient conversion of pretreated brewer’s spent grain and wheat bran by submerged cultivation of Hericium erinaceus[J]. Bioresource Technology, 2016, 222:123-129.
[39] LI W, ZHOU W, SONG S B, et al. Sterol fatty acid esters from the mushroom Hericium erinaceum and their PPAR transactivational effects[J]. Journal of Natural Products, 2014, 77(12):2611-2618.
[40] 杜娇. 猴头菌麦角甾醇高产发酵条件及提取工艺的研究[D]. 太谷: 山西农业大学, 2020.
DU J. Study on high-yield fermentation conditions and extraction technology of ergosterol from Hericium erinaceus[D].Taigu: Shanxi Agricultural University, 2020.
[41] 张忠, 吴迪, 王雨阳, 等. 猴头菌高产麦角甾醇液体发酵工艺优化[J]. 菌物学报, 2021, 40(8):2159-2170.
ZHANG Z, WU D, WANG Y Y, et al. Optimization of liquid fermentation process of ergosterol produced by Hericium erinaceus[J]. Mycosystema, 2021, 40(8):2159-2170.
[42] 蔡佳佳, 张岩, 邢春玉, 等. 猴头菌麦角甾醇高产菌株选育及深层培养条件的优化[J]. 食品安全导刊, 2016(21):119-123.
CAI J J, ZHANG Y, XING C Y, et al. Breeding of Hericium erinaceus ergosterol-producing strain and optimization of submerged culture conditions[J]. China Food Safety Magazine, 2016(21):119-123.
[43] ASADA C, OKUMURA R, SASAKI C, et al. Acceleration of Hericium erinaceum mycelial growth in submerged culture using yogurt whey as an alternative nitrogen source[J]. Advances in Bioscience and Biotechnology, 2012, 3(7):828-832.
[44] 戴肖东, 张介驰, 韩增华, 等. 十株野生猴头菌菌株的栽培性状及麦角甾醇含量[J]. 食用菌学报, 2014, 21(3):45-49.
DAI X D, ZHANG J C, HAN Z H, et al. Growth parameters and ergosterol content of mycelia and fruit bodies of ten Hericium erinaceus strains collected from the wild in Heilongjiang Province, China[J]. Acta Edulis Fungi, 2014, 21(3):45-49.
[45] 杜娇, 叶枫, 耿雪冉, 等. 猴头菌液体发酵产α-半乳糖苷酶工艺优化及其酶学性质[J]. 食用菌学报, 2019, 26(4):107-115.
DU J, YE F, GENG X R, et al. Process optimization for α-galactosidase produced by liquid fermentation of Hericium erinaceus and its enzymatic properties[J]. Acta Edulis Fungi, 2019, 26(4):107-115.
[46] KOBAYASHI S, HAMADA Y, YASUMOTO T, et al. Total syntheses and endoplasmic reticulum stress suppressive activities of hericenes A-C and their derivatives[J]. Tetrahedron Letters, 2018, 59(18):1733-1736.
[47] 汪锴, 陈保送, 宝丽, 等. 猴头菌属药用真菌活性次级代谢产物研究概况[J]. 菌物学报, 2015, 34(4):553-568.
WANG K, CHEN B S, BAO L, et al. A review of research on the active secondary metabolites of Hericium species[J]. Mycosystema, 2015, 34(4):553-568.
[48] ALSOUFI A S M, PZ,CZKOWSKI C, DŁUGOSZ M, et al. Influence of selected abiotic factors on triterpenoid biosynthesis and saponin secretion in marigold (Calendula officinalis L.) in vitro hairy root cultures[J]. Molecules, 2019, 24(16):2907.
[49] LU H Y, LIU S Y, ZHANG S L, et al. Light irradiation coupled with exogenous metal ions to enhance exopolysaccharide synthesis from Agaricus sinodeliciosus ZJU-TP-08 in liquid fermentation[J]. Journal of Fungi, 2021, 7(11):992.
[50] 高梦祥, 夏帆, 朱朋涛. 交变磁场对猴头菌生长及胞外多糖的影响[J]. 农业机械学报, 2009, 40(2):139-141; 90.
GAO M X, XIA F, ZHU P T. Influence of alternating magnetic field on growth and polysaccharide outside the cell of lions mane hericium[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(2):139-141; 90.
[51] 朱莉萍, 马海乐, 陆敏, 等. 低频交变磁场对樟芝液态发酵的影响[J]. 现代食品科技, 2019, 35(8):153-159; 54.
ZHU L P, MA H L, LU M, et al. Effects of low-intensity alternating magnetic field on liquid fermentation of Antrodia camphorata[J]. Modern Food Science and Technology, 2019, 35(8):153-159; 54.
[52] 韦朝阳, 贺亮, 邵双双, 等. 外源添加物对食药用菌液体发酵影响的研究进展[J]. 食品科学, 2015, 36(7):245-250.
WEI C Y, HE L, SHAO S S, et al. A review on the effects of exogenous additives on submerged fermentation of edible and medicinal fungi[J]. Food Science, 2015, 36(7):245-250.
[53] DAI X D, ZHAN Y G, ZHANG J C, et al. Regulatory effect of salicylic acid and methyl jasmonate supplementation on ergosterol production in Hericium erinaceus mycelia[J]. Journal of Forestry Research, 2015, 26(1):71-77.
[54] OKUMURA R, NAKAMURA Y, SASAKI C, et al. Effects of Tween series and agar additives on mycelia biomass and β-glucan production by Hericium erinaceus in submerged culture[J]. Biomass Conversion and Biorefinery, 2023, 13(4):3135-3141.
[55] WANG K F, SUI K Y, GUO C, et al. Quorum sensing molecule-farnesol increased the production and biological activities of extracellular polysaccharide from Trametes versicolor[J]. International Journal of Biological Macromolecules, 2017, 104:377-383.
[56] WANG X L, ZHANG L L, CHEN N, et al. The effects of quorum sensing molecule farnesol on the yield and activity of extracellular polysaccharide from Grifola frondosa in liquid fermentation[J]. International Journal of Biological Macromolecules, 2021, 191:377-384.
[57] YANG J, HUANG Y, XU H Y, et al. Optimization of fungi co-fermentation for improving anthraquinone contents and antioxidant activity using artificial neural networks[J]. Food Chemistry, 2020, 313:126138.
[58] MA T W, LAI Y T, YANG F C. Enhanced production of triterpenoid in submerged cultures of Antrodia cinnamomea with the addition of citrus peel extract[J]. Bioprocess and Biosystems Engineering, 2014, 37(11):2251-2261.
[59] ZHANG B B, GUAN Y Y, HU P F, et al. Production of bioactive metabolites by submerged fermentation of the medicinal mushroom Antrodia cinnamomea: Recent advances and future development[J]. Critical Reviews in Biotechnology, 2019, 39(4):541-554.
[60] CHEN J, ZENG X, YANG Y L, et al. Genomic and transcriptomic analyses reveal differential regulation of diverse terpenoid and polyketides secondary metabolites in Hericium erinaceus[J]. Scientific Reports, 2017, 7:10151.