研究报告

丙二酸的生物合成及其发酵优化

  • 凌春榕 ,
  • 杨小雁 ,
  • 耿嘉宝 ,
  • 毛银 ,
  • 赵运英 ,
  • 邓禹
展开
  • 1(江南大学,粮食发酵与食品生物制造国家工程研究中心,江苏 无锡,214122)
    2(江南大学,江苏省生物活性产品加工工程研究中心,江苏 无锡,214122)
    3(山东渤海实业集团有限公司,山东省油脂油料精深加工技术重点实验室,山东 滨州,256599)
第一作者:硕士研究生(赵运英副教授和邓禹教授为共同通信作者,E-mail:yunyingzhao@jiangnan.edu.cn;dengyu@jiangnan.edu.cn)

收稿日期: 2023-02-05

  修回日期: 2023-03-15

  网络出版日期: 2024-01-31

基金资助

国家重点研发计划项目(2022YFA0911801,2022YFA0911804);江苏省杰出青年基金项目(SBK2022010219);山东省重点研发计划项目(2022CXPT042)

Biosynthesis and fermentation optimization of malonic acid

  • LING Chunrong ,
  • YANG Xiaoyan ,
  • GENG Jiabao ,
  • MAO Yin ,
  • ZHAO Yunying ,
  • DENG Yu
Expand
  • 1(National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China)
    2(Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China)
    3(Shandong Provincial Key Laboratory of Fat & Oil Deep-processing, Shandong Bohi Industry Co.Ltd., Binzhou 256599, China)

Received date: 2023-02-05

  Revised date: 2023-03-15

  Online published: 2024-01-31

摘要

丙二酸作为一种重要的二元羧酸,广泛应用于多种领域。但目前由于生物法合成丙二酸产量较低,不适合进行工业化生产。为提高丙二酸的生物法合成能力,该文以大肠杆菌BL21(DE3)为底盘细胞,通过过量表达ppcaspApanDsdhCpa0132yneI基因,构建了丙二酸生物合成工程菌BL21(PPP)。在摇瓶条件下,对该菌株的发酵条件进行了优化,丙二酸合成量达0.48 g/L,较优化前提高了1倍。同时,该文探究了外源添加生物素及富马酸对丙二酸合成的影响,在添加75 μg/L生物素的发酵条件下,丙二酸的产量较对照组提高了32.59%;在添加终质量浓度为8 g/L的富马酸的条件下,该菌株可合成1.2 g/L丙二酸。在5 L发酵罐中,该菌株最高可以合成12.42 g/L的丙二酸。该文实现了丙二酸在大肠杆菌BL21(DE3)中的生物合成,并通过对发酵条件的优化进一步提高了丙二酸的产量,为更进一步提高丙二酸产量奠定了基础。

本文引用格式

凌春榕 , 杨小雁 , 耿嘉宝 , 毛银 , 赵运英 , 邓禹 . 丙二酸的生物合成及其发酵优化[J]. 食品与发酵工业, 2024 , 50(1) : 44 -51 . DOI: 10.13995/j.cnki.11-1802/ts.035028

Abstract

As an important dicarboxylic acid, malonic acid is widely used in many fields. However, due to the low yield of malonic acid synthesized by biological method, it is not suitable for industrial production currently. To improve the biosynthesis of malonic acid, a recombinant strain BL21(PPP) was constructed to synthesize malonate by overexpressing six genes of ppc, aspA, panD, sdhC, pa0132 and yneI by using Escherichia coli BL21(DE3) as the chassis cell. The fermentation conditions of this strain were optimized in shake flask, and it was found that the strain could produce 0.48 g/L malonic acid, which was 1-fold higher than before optimization. The effects of additional biotin and fumaric acid on malonic acid production were also investigated, and it was found that the production of malonic acid was increased by 32.59% compared with the control group. In addition, the strain could produce 1.2 g/L malonic acid at a final concentration of 8 g/L fumaric acid. Finally, in a 5 L fermenter, the production of malonic acid was increased to 12.42 g/L. In this study, the biosynthesis of malonic acid in E. coli BL21(DE3) was achieved, and the yield of malonic acid was further improved by the optimization of fermentation, which laid a foundation for further improvement of malonic acid production.

参考文献

[1] 刘旭, 李大铁, 卢冬梅, 等.丙二酸的合成与应用[J].山东化工, 2016, 45(4):27-28;36.
LIU X, LI D T, LU D M, et al.Synthesis and application of malonic acid[J].Shandong Chemical Industry, 2016, 45(4):27-28;36.
[2] 雷洪,尹应武,罗必奎,等.丙二酸或其酯的制备方法:中国,CN01141407.3 [P].2006-05-10.
LEI H, YIN B W, LUO B K, et al.Preparation method of malonic acid or its ester:China,CN01141407.3 [P].2006-05-10.
[3] 刘强, 张红梅, 常宏宏, 等.树脂连续催化制备丙二酸的工艺研究[J].太原理工大学学报, 2004, 35(5):565-567.
LIU Q, ZHANG H M, CHANG H H, et al.Study on the preparation process of melomic acid through continuous catalyzing by resin[J].Journal of Taiyuan University of Technology, 2004, 35(5):565-567.
[4] 刘旭,杨国忠,李大铁,等.固体丙二酸的制备及提纯方法:中国,CN103408418A[P].2013-11-27.
LIU X, YANG G Z, LI D T et al.Preparation and purification of solid malonic acid:China,CN103408418A[P].2013-11-27.
[5] 朱伟. 高纯度丙二酸的制造方法:中国, CN1562942A [P].2006-05-31.
ZHU W.Manufacturing method of high purity malonic acid:China, CN1562942A [P].2006-05-31.
[6] KLIKAR M, JELÍNKOVÁ V, RŬŽIČKOVÁ Z, et al.Malonic acid derivatives on duty as electron-withdrawing units in push-pull molecules[J].European Journal of Organic Chemistry, 2017, 2017(19):2764-2779.
[7] CHAE T U, AHN J H, KO Y S, et al.Metabolic engineering for the production of dicarboxylic acids and diamines[J].Metabolic Engineering, 2020, 58:2-16.
[8] SONG C W, KIM J W, CHO I J, et al.Metabolic engineering of Escherichia coli for the production of 3-hydroxypropionic acid and malonic acid through β-alanine route[J].ACS Synthetic Biology, 2016, 5(11):1256-1263.
[9] 付雯宣, 李诗韵, 赵运英, 等.代谢工程改造大肠杆菌合成丙二酸[J].生物工程学报, 2022, 38(7):2566-2580.
FU W X, LI S Y, ZHAO Y Y, et al.Metabolic engineering of Escherichia coli for production of malonic acid[J].Chinese Journal of Biotechnology, 2022, 38(7):2566-2580.
[10] DIETRICH J A, FORTMAN J L, STEEN E J.Recombinant host cells for the production of malonate:US11248215[P].2022-02-15.
[11] LI S Y, FU W X, SU R F, et al.Metabolic engineering of the malonyl-CoA pathway to efficiently produce malonate in Saccharomyces cerevisiae[J].Metabolic Engineering, 2022, 73:1-10.
[12] GU S Y, ZHAO Z, YAO Y H, et al.Designing and constructing a novel artificial pathway for malonic acid production biologically[J].Frontiers in Bioengineering and Biotechnology, 2022, 9:820507.
[13] 冯宁, 白亚磊, 徐庆阳, 等.氮源及其补加策略对L-缬氨酸发酵的影响[J].食品与发酵工业, 2011, 37(4):1-6.
FENG N, BAI Y L, XU Q Y, et al.The effect of nitrogen sources and its additional strategies on L-valine fermentation by Brevibacterium flavum XV0505[J].Food and Fermentation Industries, 2011, 37(4):1-6.
[14] HANSEN L H, KNUDSEN S, SØRENSEN S J.The effect of the lacY gene on the induction of IPTG inducible promoters, studied in Escherichia coli and Pseudomonas fluorescens[J].Current Microbiology, 1998, 36(6):341-347.
[15] SRIUBOLMAS N, PANBANGRED W, SRIURAIRATANA S, et al.Localization and characterization of inclusion bodies in recombinant Escherichia coli cells overproducing penicillin G acylase[J].Applied Microbiology and Biotechnology, 1997, 47(4):373-378.
[16] ZHANG Y, DAI X F, JIN H N, et al.The effect of optimized carbon source on the synthesis and composition of exopolysaccharides produced by Lactobacillus paracasei[J].Journal of Dairy Science, 2021, 104(4):4023-4032.
[17] NAKANO K, RISCHKE M, SATO S, et al.Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor[J].Applied Microbiology and Biotechnology, 1997, 48(5):597-601.
[18] 吴新阳, 裴广胜, 郑小梅, 等.不同抑制剂对谷氨酸棒状杆菌磷酸烯醇式丙酮酸羧化酶酶活的影响[J].生物技术通报, 2013(7):172-178.
WU X Y, PEI G S, ZHENG X M, et al.Phosphoenolpyruvate carboxylase from Corynebacterium glutamicum inhibited by diverse biochemicals[J].Biotechnology Bulletin, 2013(7):172-178.
[19] 赵艳, 陈丽梅, 李昆志.磷酸烯醇式丙酮酸羧化酶的分子结构研究进展[J].生物技术通报, 2007(5):9-13.
ZHAO Y, CHEN L M, LI K Z.Research progresses on the molecular structure of phosphoenolpyruvate carboxylase[J].Biotechnology Bulletin, 2007(5):9-13.
[20] LIETZAN A D, LIN Y, ST MAURICE M.The role of biotin and oxamate in the carboxyltransferase reaction of pyruvate carboxylase[J].Archives of Biochemistry and Biophysics, 2014, 562:70-79.
[21] 陈园园, 程慧, 李宁娜, 等.丙酮酸羧化酶对酿酒酵母积累琥珀酸的作用探究[J].食品与发酵工业, 2019, 45(13):38-44.
CHEN Y Y, CHENG H, LI N N, et al.Effects of pyruvate carboxylase on succinic acid accumulation in Saccharomyces cerevisiae[J].Food and Fermentation Industries, 2019, 45(13):38-44.
[22] SONG C W, LEE J, KO Y S, et al.Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid[J].Metabolic Engineering, 2015, 30:121-129.
[23] PIAO X Y, WANG L, LIN B X, et al.Metabolic engineering of Escherichia coli for production of L-aspartate and its derivative β-alanine with high stoichiometric yield[J].Metabolic Engineering, 2019, 54:244-254.
文章导航

/