研究报告

Amycolatopsis sp.的全基因组测序及香兰素合成途径分析

  • 王冠娜 ,
  • 郑义培 ,
  • 郑璞
展开
  • (江南大学 生物工程学院,工业生物技术教育部重点实验室,江苏 无锡,214122)
第一作者:硕士研究生(郑璞教授为通信作者,E-mail:zhengpu@jiangnan.edu.cn)

收稿日期: 2023-03-07

  修回日期: 2023-04-02

  网络出版日期: 2024-03-15

基金资助

国家轻工业技术与工程一流学科计划(LITE2 018-04)

Whole genome sequencing and vanillin synthesis pathway analysis of Amycolatopsis sp.

  • WANG Guanna ,
  • ZHENG Yipei ,
  • ZHENG Pu
Expand
  • (The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China)

Received date: 2023-03-07

  Revised date: 2023-04-02

  Online published: 2024-03-15

摘要

拟无枝酸菌(Amycolatopsis sp.)CCTCC NO:M2011265是一株可以转化阿魏酸生成香兰素菌株,该研究利用Illumina Hiseq测序平台对拟无枝酸菌进行全基因组测序、拼接、基因预测及功能注释,并从拟无枝酸菌的全基因组中筛选和鉴定参与香兰素合成的功能基因。结果表明,总共组装得到64个scaffolds,整个基因组组装大小约为8 425 551 bp,总GC含量为71.89%。通过生物信息学分析发现了香兰素合成关键基因echfcsech2基因,及香兰素分解代谢基因vdh基因,其中echfcs为一个基因簇,并进一步构建过表达ech-fcs-ech2菌株,其摇瓶发酵表明转化阿魏酸生成香兰素速率加快,发酵时间显著缩短。该研究获得的拟无枝酸菌的全基因组信息为解析其转化阿魏酸生成香兰素发酵过程中的代谢机理提供遗传信息基础,也为通过代谢工程获得高产香兰素菌株的研究提供理论支持。

本文引用格式

王冠娜 , 郑义培 , 郑璞 . Amycolatopsis sp.的全基因组测序及香兰素合成途径分析[J]. 食品与发酵工业, 2024 , 50(4) : 25 -30 . DOI: 10.13995/j.cnki.11-1802/ts.035407

Abstract

Amycolatopsis sp. CCTCC NO: M2011265 is a strain that can biotransform ferulic acid to produce vanillin. In this study, the Illumina HiSeq sequencing platform was used to perform whole genome sequencing,splicing, gene prediction, and functional annotation were performed to screen and identify functional genes involved in vanillin biosynthesis from the whole genome of Amycolatopsis sp. The results showed that a total of 64 scaffolds were assembled, with the whole genome assembly size of about 8 425 551 bp and the total GC content of 71.89%. Through bioinformatics analysis, the key genes of vanillin synthesis including ech, fcs, and ech2, and the vanillin degradation gene vdh gene were found, in which ech-fcs belonged to a gene cluster. In addition, the overexpression strain of ech-fcs-ech2 was constructed, and the shaker fermentation showed that the conversion of ferulic acid to vanillin was accelerated and the fermentation time was significantly shortened. The whole genome information obtained in this study provides a basis of genetic information for understanding the metabolic mechanism of Amycolatopsis sp. during the fermentative production vanillin from ferulic acid, and also provides theoretical support for the research of obtaining high vanillin-producing strains through metabolic engineering.

参考文献

[1] MA Q Q, LIU L W, ZHAO S, et al.Biosynthesis of vanillin by different microorganisms:A review[J].World Journal of Microbiology and Biotechnology, 2022, 38(3):1-9.
[2] PRIEFERT H, RABENHORST J, STEINBÜCHEL A.Biotechnological production of vanillin[J].Applied Microbiology and Biotechnology, 2001, 56(3-4):296-314.
[3] 吕晓婕. 香兰素行业发展状况[J].现代食品, 2019(7):14-16.
LYU X J.The development of vanillin industries[J].Modern Food, 2019(7):14-16.
[4] MARTĂU G A, CĂLINOIU L F, VODNAR D C.Bio-vanillin:Towards a sustainable industrial production[J].Trends in Food Science & Technology, 2021, 109:579-592.
[5] CHRISTIAN F, FLORIAN M, ALEXANDER S.Metabolic engineering of the actinomycete Amycolatopsis sp.strain ATCC 39116 towards enhanced production of natural vanillin[J].Applied and Environmental Microbiology, 2016, 82(11):3410-3419.
[6] HUA D L, MA C Q, SONG L F, et al.Enhanced vanillin production from ferulic acid using adsorbent resin[J].Applied Microbiology and Biotechnology, 2007, 74(4):783-790.
[7] LUO C W, TSEMENTZI D, KYRPIDES N, et al.Direct comparisons of Illumina vs.Roche 454 sequencing technologies on the same microbial community DNA sample[J].PLoS One, 2012, 7(2):e30087.
[8] GARCÍA-HIDALGO J, BRINK D P, RAVI K, et al.Vanillin production in Pseudomonas:Whole-genome sequencing of Pseudomonas sp.strain 9.1 and reannotation of Pseudomonas putida CalA as a vanillin reductase[J].Applied and Environmental Microbiology, 2020, 86(6):e02442-19.
[9] TANG B A, ZHAO W, ZHENG H J, et al.Complete genome sequence of Amycolatopsis mediterranei S699 based on De Novo assembly via a combinatorial sequencing strategy[J].Journal of Bacteriology, 2012, 194(20):5699-5700.
[10] DAVIS J R, GOODWIN L A, WOYKE T, et al.Genome sequence of Amycolatopsis sp.strain ATCC 39116, a plant biomass-degrading actinomycete[J].Journal of Bacteriology, 2012, 194(9):2396-2397.
[11] 刘琼, 郑璞.常压室温等离子体诱变选育高产香兰素拟无枝酸菌(Amycolatopsis sp.)[J].食品与发酵工业, 2013, 39(10):40-44.
LIU Q, ZHENG P.Induced mutation breeding of high vanillin-production Amycolatopsis sp.by atmospheric and room temperature plasmas[J].Food and Fermentation Industries, 2013, 39(10):40-44.
[12] 王兴林, 郑璞, 刘琼.Amycolatopsis sp.转化阿魏酸生产香草醛[J].工业微生物, 2013, 43(5):33-38.
WANG X L, ZHENG P, LIU Q.Biotransformation of ferulic acid to vanillin by Amycolatopsis sp[J].Industrial Microbiology, 2013, 43(5):33-38.
[13] 郑义培, 吴丹, 郑璞. 利用CRISPR-Cas9技术构建敲除VDH的产香兰素拟无枝酸菌[J].微生物学报, 2021, 61(11):3583-3593.
ZHENG Y P, WU D, ZHENG P.A vanillin producing Amycolatopsis sp.with the VDH gene knockout by CRISPR-Cas9 technology[J].Acta Microbiologica Sinica, 2021, 61(11):3583-3593.
[14] LUO R B, LIU B H, XIE Y L, et al.SOAPdenovo2:An empirically improved memory-efficient short-read de novo assembler[J].GigaScience, 2012, 1(1):18.
[15] SAHARA T, FUJIMORI K E, NEZUO M, et al.Draft genome sequence of Saccharomyces cerevisiae NAM34-4C, a lactic acid-assimilating industrial yeast strain[J].Genome Announcements, 2014, 2(1):e01145-13.
[16] SEEMANN T.Prokka:Rapid prokaryotic genome annotation[J].Bioinformatics, 2014, 30(14):2068-2069.
[17] FRANCIS F, DUMAS M D, DAVIS S B, et al.Clustering of circular consensus sequences:Accurate error correction and assembly of single molecule real-time reads from multiplexed amplicon libraries[J].BMC Bioinformatics, 2018, 19(11):1-8.
[18] OGATA H, GOTO S, SATO K, et al.KEGG:Kyoto encyclopedia of genes and genomes[J].Nucleic Acids Research,1999,27(1):29-34.
[19] CONESA A, GÖTZ S, GARCÍA-GÓMEZ J M, et al.Blast2GO:A universal tool for annotation, visualization and analysis in functional genomics research[J].Bioinformatics, 2005, 21(18):3674-3676.
[20] MEYER F, NETZER J, MEINERT C, et al.A proteomic analysis of ferulic acid metabolism in Amycolatopsis sp.ATCC 39116[J].Applied Microbiology and Biotechnology, 2018, 102(14):6119-6142.
文章导航

/