研究报告

玉米黄质对魔芋葡甘聚糖凝胶性能及热稳定性评价

  • 任鸿飞 ,
  • 严竟 ,
  • 彭曼曼 ,
  • 刘雄 ,
  • 张甫生
展开
  • 1(西南大学 食品科学学院,重庆,400715)
    2(四川国检检测有限责任公司,四川 泸州,646000)
    3(川渝共建特色食品重庆市重点实验室,重庆,400715)
第一作者:硕士研究生(张甫生副教授为通信作者,E-mail:zfsswu@163.com)

收稿日期: 2022-10-12

  修回日期: 2022-11-29

  网络出版日期: 2024-03-15

基金资助

重庆市自然科学基金项目(cstc2018jcyjAX0002)

Evaluation of characterization and thermal stability of konjac glucomannan gel by zeaxanthin

  • REN Hongfei ,
  • YAN Jing ,
  • PENG Manman ,
  • LIU Xiong ,
  • ZHANG Fusheng
Expand
  • 1(College of Food Science, Southwest University, Chongqing 400715, China)
    2(Sichuan Guojian Inspection Co.Ltd., Luzhou 646000, China)
    3(Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China)

Received date: 2022-10-12

  Revised date: 2022-11-29

  Online published: 2024-03-15

摘要

为探究魔芋多糖体系与色素小分子互作的方式并解决魔芋凝胶赋色的问题,该研究以魔芋葡甘聚糖(konjac glucomannan,KGM)凝胶为研究对象,使用玉米黄质(zeaxanthin,ZEA)对KGM凝胶赋色,以不添加色素的KGM凝胶作为对照组,对比分析对照组和赋色后KGM/ZEA复合有色凝胶的凝胶性能和微观结构。结果表明,KGM/ZEA-2复合有色凝胶的色素保留率、L*值、a*值和b*值较对照组分别显著升高了73.82%、9.78%、4.34%、5.63%,较KGM/ZEA-1分别显著升高了16.33%、2.55%、1.09%、2.14%;其持水性、凝胶强度、硬度和咀嚼性较对照组分别显著升高了2.18%、91.01%、54.09%、50.70%,较KGM/ZEA-1显著分别升高了0.88%、75.40%、45.48%、42.23%。微观结构表明,KGM/ZEA-2复合有色凝胶在疏水相互作用的驱动下形成了更加致密的网络结构,可截留更多的色素小分子,同时提高了其结晶度和热稳定性。因此,玉米黄质能够稳定地结合在魔芋凝胶体系内,作为着色剂应用于多彩凝胶素食的开发。

本文引用格式

任鸿飞 , 严竟 , 彭曼曼 , 刘雄 , 张甫生 . 玉米黄质对魔芋葡甘聚糖凝胶性能及热稳定性评价[J]. 食品与发酵工业, 2024 , 50(4) : 218 -224 . DOI: 10.13995/j.cnki.11-1802/ts.033946

Abstract

To explore the interaction between the konjac polysaccharide system and small pigment molecules and solve the problem of konjac gel coloring, this study took konjac glucomannan (KGM) as the research subject and used zeaxanthin (ZEA) to color KGM gel. KGM gel without pigment was selected as a control group, and the gel characterization and microstructure of the control group and colored KGM/ZEA composite coloring gel were compared and analyzed. Results exhibited that compared with the control group, the ZEA retention rate, L*, a*, and b* of KGM/ZEA-2 composite coloring gel were significantly increased by 73.82%, 9.78%, 4.34%, and 5.63% and increased by 16.33%, 2.55%, 1.09%, and 2.14% compared with KGM/ZEA-1 composite coloring gel. Compared with the control group, its water-holding capacity, gel strength, hardness, and chewiness were evidently increased by 2.18%, 91.01%, 54.09%, and 50.70% and evidently increased by 0.88%, 75.40%, 45.48%, and 42.23% compared with KGM/ZEA-1 composite coloring gel. Microstructure showed that KGM/ZEA-2 composite coloring gel formed a denser network structure driven by hydrophobic interaction, which could intercept more pigment molecules and improve its crystallinity and thermal stability. Therefore, zeaxanthin can be incorporated into the KGM gel system stably and used as a colorant in the development of coloring gel vegetarian.

参考文献

[1] YULIARTI O, KIAT KOVIS T J, YI N J.Structuring the meat analogue by using plant-based derived composites[J].Journal of Food Engineering, 2021, 288:110138.
[2] SOLO-DE-ZALDÍVAR B, TOVAR C A, BORDERÍAS A J, et al.Effect of deacetylation on the glucomannan gelation process for making restructured seafood products[J].Food Hydrocolloids, 2014, 35:59-68.
[3] SOLO-DE-ZALDÍVAR B, TOVAR C A, BORDERÍAS A J, et al.Pasteurization and chilled storage of restructured fish muscle products based on glucomannan gelation[J].Food Hydrocolloids, 2015, 43:418-426.
[4] WANG L X, DAO L P, GUO Q Y, et al.Investigation on the influence of AC electric filed and KCl on the structure and gel properties of Konjac glucomannan[J].Food Chemistry, 2022, 386:132755.
[5] YANG J, XIAO J X, DING L Z.An investigation into the application of konjac glucomannan as a flavor encapsulant[J].European Food Research and Technology, 2009, 229(3):467-474.
[6] WANG J, LIU C H, SHUAI Y, et al.Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels[J].Colloids and Surfaces B:Biointerfaces, 2014, 113:223-229.
[7] 向智男, 宁正祥.功能性色素:玉米黄质的特性、提取及其研究应用[J].食品与机械, 2005,21(1):74-77.
XIANG Z N, NING Z X.Properties, extraction and application of functional pigment-zeaxanthin[J].Food and Machinery, 2005,21(1):74-77.
[8] 刘辉. 玉米黄色素的提取及应用研究进展[J].现代食品, 2016(9):41-42.
LIU H.Research progress on extraction and application of corn yellow pigment[J].Modern Food, 2016(9):41-42.
[9] 朱坤, 刘缘勤, 范盛玉, 等.魔芋葡甘聚糖-大豆分离蛋白-辣椒红色素复合有色凝胶的制备及其性能研究[J].食品与发酵工业, 2021,47(15):213-219.
ZHU K, LIU Y Q, FAN S Y, et al.Preparation and characteristics of konjac glucomannan-soybean protein isolate-capsanthin coloring composite gel[J].Food and Fermentation Industries, 2021, 47(15):213-219.
[10] OSANLOU R, EMTYAZJOO M, BANAEI A, et al.Preparation of solid lipid nanoparticles and nanostructured lipid carriers containing zeaxanthin and evaluation of physicochemical properties[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 641:128588.
[11] DE CAMPO C, DICK M, PEREIRA DOS SANTOS P, et al.Zeaxanthin nanoencapsulation with Opuntia monacantha mucilage as structuring material:Characterization and stability evaluation under different temperatures[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 558:410-421.
[12] LIU Y, ZHANG C Y, CUI B Z, et al.Effect of emulsifier composition on oil-in-water nano-emulsions:Fabrication, structural characterization and delivery of zeaxanthin dipalmitate from Lycium barbarum L.[J].LWT, 2022, 161:113353.
[13] 孟繁磊, 宋志峰, 谭莉, 等.UPLC法测定黄玉米中玉米黄质[J].中国食品添加剂, 2018(11):188-192.
MENG F L, SONG Z F, TAN L, et al.Determination of zeaxanthin in yellow corn by UPLC [J].China Food Additives, 2018(11):188-192.
[14] 杨悦, 任元元, 邓利玲,等.基于碱性电解水形成的魔芋热不可逆凝胶性质研究[J].食品与发酵工业, 2022, 48(18):149-154.
YANG Y, REN Y Y, DENG L L, et al.Study on properties of thermal irreversible konjac gel formed by alkaline electrolyzed water[J].Food and Fermentation Industries, 2022, 48(18):149-154.
[15] HERRANZ B, TOVAR C A, SOLO-DE-ZALDÍVAR B, et al.Influence of alkali and temperature on glucomannan gels at high concentration[J].LWT-Food Science and Technology, 2013, 51(2):500-506.
[16] WU C H, PENG S H, WEN C R, et al.Structural characterization and properties of konjac glucomannan/curdlan blend films[J].Carbohydrate Polymers, 2012, 89(2):497-503.
[17] WANG L, XIAO M, DAI S H, et al.Interactions between carboxymethyl konjac glucomannan and soy protein isolate in blended films[J].Carbohydrate Polymers, 2014, 101:136-145.
[18] LIU X B, GAN J, NIRASAWA S, et al.Effects of sodium carbonate and potassium carbonate on colloidal properties and molecular characteristics of konjac glucomannan hydrogels[J].International Journal of Biological Macromolecules, 2018, 117:863-869.
[19] ZHANG Z P, ZHANG R J, MCCLEMENTS D J.Encapsulation of β-carotene in alginate-based hydrogel beads:Impact on physicochemical stability and bioaccessibility[J].Food Hydrocolloids, 2016, 61:1-10.
[20] ZHANG T, XUE Y, LI Z J, et al.Effects of deacetylation of konjac glucomannan on Alaska Pollock surimi gels subjected to high-temperature (120 ℃) treatment[J].Food Hydrocolloids, 2015, 43:125-131.
[21] GUO L P, YOKOYAMA W, CHEN L, et al.Characterization and physicochemical properties analysis of konjac glucomannan:Implications for structure-properties relationships[J].Food Hydrocolloids, 2021, 120:106818.
[22] 周绪霞, 姜珊, 顾赛麒, 等.油茶籽油对鱼糜凝胶特性及凝胶结构的影响[J].食品科学, 2017, 38(9):27-33.
ZHOU X X, JIANG S, GU S Q, et al.Effect of Camellia tea oil on properties and structure of surimi gels[J].Food Science, 2017, 38(9):27-33.
[23] LUE S J, SHIEH S J.Modeling water states in polyvinyl alcohol-fumed silica nano-composites[J].Polymer, 2009, 50(2):654-661.
[24] ZHAO X Y, WANG X F, ZENG L J, et al.Effects of oil-modified crosslinked/acetylated starches on silver carp surimi gel:Texture properties, water mobility, microstructure, and related mechanisms[J].Food Research International, 2022, 158:111521.
[25] ZHOU X X, CHEN H, LYU F, et al.Physicochemical properties and microstructure of fish myofibrillar protein-lipid composite gels:Effects of fat type and concentration[J].Food Hydrocolloids, 2019, 90:433-442.
[26] 韩柯颖, 冯潇, 杨玉玲, 等.添加山茶油对肌原纤维蛋白凝胶特性的影响[J].中国农业科学, 2021, 54(20):4446-4455.
HAN K Y, FENG X, YANG Y L, et al.Effects of camellia oil on the properties of myofibrillar protein gel[J].Scientia Agricultura Sinica, 2021, 54(20):4446-4455.
[27] CHEN Z J, WANG S S, SHANG L C, et al.An efficient and simple approach for the controlled preparation of partially degraded konjac glucomannan[J].Food Hydrocolloids, 2020, 108:106017.
[28] 范盛玉, 严竟, 朱坤,等.辣椒红色素对魔芋葡甘聚糖-大豆分离蛋白复合凝胶性质的影响[J].食品与发酵工业, 2023, 49(8):216-222.
FAN S Y, YAN J, ZHU K, et al.Effects of capsanthin on the properties of KGM-SPI composite gel[J].Food and Fermentation Industries, 2023, 49(8):216-222.
[29] RAN X, YANG H.Promoted strain-hardening and crystallinity of a soy protein-konjac glucomannan complex gel by konjac glucomannan[J].Food Hydrocolloids, 2022, 133:107959.
[30] XIN C, CHEN J, LIANG H S, et al.Confirmation and measurement of hydrophobic interaction in sol-gel system of konjac glucomannan with different degree of deacetylation[J].Carbohydrate Polymers, 2017, 174:337-342.
[31] 刘子奇, 王林, 王维海, 等.a-纤维素/魔芋葡甘聚糖复合水凝胶的制备及其性能[J].精细化工, 2018, 35(7):1131-1135;1143.
LIU Z Q, WANG L, WANG W H, et al.Preparation and properties of a-cellulose/konjac glucomannan composite hydrogels[J].Fine Chemical, 2018, 35(7):1131-1135;1143.
[32] ZHANG F S, FANG M O, FANG Q, et al.Effect of high hydrostatic pressure processing on the structure and property of konjac glucomannan-casein mixture[J].Chinese Journal of Structural Chemistry, 2018, 37(1):55-64.
[33] WEI Y, YU Z P, LIN K S, et al.Fabrication and characterization of resveratrol loaded zein-propylene glycol alginate-rhamnolipid composite nanoparticles:Physicochemical stability, formation mechanism and in vitro digestion[J].Food Hydrocolloids, 2019, 95:336-348.
文章导航

/