该研究采用普鲁士蓝纳米粒子(Prussian blue nanoparticles,PBNPs)作为信号标签,通过制备PBNPs和聚多巴胺包裹普鲁士蓝纳米粒子(polydopamine coated Prussian blue nanoparticles,PB@PDA),优化测试参数、测试试纸条灵敏度和特异性等,研究PBNPs和PB@PDA对呕吐毒素(deoxynivalenol,DON)的检测性能。结果表明,在最优实验条件下,所构建的基于PBNPs和PB@PDA的免疫层析试纸条对DON标准溶液视觉检出限分别为1.0 ng/mL和 0.2 ng/mL,在0.1~0.5 ng/mL保持良好的线性关系,PB@PDA比PBNPs-LFIA检测灵敏度提高5倍,2种试纸条均显示良好的特异性。将PBNPs和PB@PDA两种试纸条应用于小麦样品检测,显示试纸条能排除小麦基质干扰,其检测限分别为20 ng/g和5 ng/g,且PB@PDA检测灵敏度高于商品化胶体金试纸条(10 ng/g)。可见,PB@PDA试纸条表现高灵敏性和抗干扰性,可满足呕吐毒素国家安全标准的限量检测要求,为现场快速筛查小麦中呕吐毒素污染提供一种新方法。
[1] 马宏伟, 刘永智.小麦中呕吐毒素检测方法的研究[J].食品安全导刊, 2021(27):73-74.
MA H W, LIU Y Z.Study on detection method of vomiting toxin in wheat[J].China Food Safety Magazine, 2021(27):73-74.
[2] PESTKA J J.Deoxynivalenol:Mechanisms of action, human exposure, and toxicological relevance[J].Archives of Toxicology, 2010, 84(9):663-679.
[3] 朱海华, 张梦雪, 胡骁飞, 等.食品中呕吐毒素检测方法的研究进展[J].食品科技, 2021, 46(11):314-320.
ZHU H H, ZHANG M X, HU X F, et al.Research progress on the detection method of vomitoxin in food[J].Food Science and Technology, 2021, 46(11):314-320.
[4] 贾卫昌, 朱寅.高效液相色谱法与酶联免疫法检测小麦中呕吐毒素的比较研究[J].粮食与食品工业, 2015, 22(3):97-100.
JIA W C, ZHU Y.A comparative research on the determination of deoxynivalenol in wheat with HPLC method and ELISA[J].Cereal and Food Industry, 2015, 22(3):97-100.
[5] 张正炜, 成玮, 沈慧梅, 等.小麦粉中脱氧雪腐镰刀菌烯醇(DON)毒素的气相色谱法检测及毒素污染去除分析[J].农药科学与管理, 2018, 39(4):33-39.
ZHANG Z W, CHENG W, SHEN H M, et al.Determination of deoxynivalenol (DON) toxin in wheat flour by gas chromatography and analysis of toxin pollution removal[J].Pesticide Science and Administration, 2018, 39(4):33-39.
[6] 龚蕾, 周陶鸿, 彭青枝, 等.免疫层析法快速检测动物源性食品中五氯酚酸钠含量[J].食品安全质量检测学报, 2022, 13(3):888-893.
GONG L, ZHOU T H, PENG Q Z, et al.Rapid determination of sodium pentachlorophenolate in animal-derived foods by immunochromatography[J].Journal of Food Safety and Quality, 2022, 13(3):888-893.
[7] GENG X Y, ZHANG F Q, GUO Z H, et al.UV-light-assisted synthesis of CeB6@Ag nano-trees for SERS application[J].Journal of Rare Earths, 2023, 41(1):149-156.
[8] 于绍楠, 任玲玲, 任立群, 等.基于上转换纳米粒子-金纳米棒的荧光共振能量转移免疫分析法用于癌胚抗原检测[J].分析化学, 2022, 50(9):1299-1307.
YU S N, REN L L, REN L Q, et al.Upconversion nanoparticles/gold nanorods-based fluorescence resonance energy transfer immunoassay for detection of carcinoembryonic antigen[J].Chinese Journal of Analytical Chemistry, 2022, 50(9):1299-1307.
[9] 莫紫梅, 袁光蔚, 王海波, 等.同位素稀释液相色谱-串联质谱法和量子点荧光免疫层析法快速测定花生油中黄曲霉毒素B1的比较[J].粮食与饲料工业, 2022(3):59-63;67.
MO Z M, YUAN G W, WANG H B, et al.Comparative study on isotope dilution high performance liquid chromatography-tandem mass spectrometry and quantum dot fluorescence immunochromatography for rapid determination of aflatoxin B1 in pearmtoil[J].Cereal and Feed Industry, 2022(3):59-63;67.
[10] 范耀龙, 陈怡怡, 朱军莉, 等.基于群青蓝纳米粒子的免疫层析法快速检测牛奶中的黄曲霉毒素M1[J].食品安全质量检测学报, 2022, 13(10):3221-3227.
FAN Y L, CHEN Y Y, ZHU J L, et al.Rapid detection of aflatoxin M1 in milk by immunochromatographic assay based on ultramarine blue nanoparticles[J].Journal of Food Safety and Quality, 2022, 13(10):3221-3227.
[11] 冯德香, 黄迎春, 张克, 等.金纳米粒子点缀普鲁士蓝-石墨烯多层膜传感界面的构建及在免疫传感器中的应用[J].分析试验室, 2019, 38(7):819-823.
FENG D X, HUANG Y C, ZHANG K, et al.Preparation and application of electrochemical immunosensor using AuNPs dotted (Prussian blue(PB)-a graphene)n muti-layer films as the sensor platform[J].Chinese Journal of Analysis Laboratory, 2019, 38(7):819-823.
[12] CATALA L, MALLAH T.Nanoparticles of prussian blue analogs and related coordination polymers:From information storage to biomedical applications[J].Coordination Chemistry Reviews, 2017, 346:32-61.
[13] 姚瑶, 冒爱荣, 陈亮, 等.基于聚苯胺-普鲁士蓝/普鲁士蓝复合膜的过氧化氢电化学传感器的制备及表征[J].分析试验室, 2021, 40(12):1467-1471.
YAO Y, MAO A R, CHEN L, et al.Preparation and characterization of hydrogen peroxide electrochemical sensor based on polyaniline-Prussian blue / Prussian blue composite films[J].Chinese Journal of Analysis Laboratory, 2021, 40(12):1467-1471.
[14] 张新红, 赵海华, 常飞, 等.普鲁士蓝比色法快速检测扁桃酸的方法[J].化学工程, 2022, 50(6):1-5;11.
ZHANG X H, ZHAO H H, CHANG F, et al.Rapid colorimetric determination of mandelic acid based on Prussian blue[J].Chemical Engineering (China), 2022, 50(6):1-5;11.
[15] ZHAO B X, HUANG Q, DOU L N, et al.Prussian blue nanoparticles based lateral flow assay for high sensitive determination of clenbuterol[J].Sensors and Actuators B: Chemical, 2018, 275:223-229.
[16] LU D, JIANG H, ZHANG G Y, et al.An in situ generated Prussian blue nanoparticle-mediated multimode nanozyme-linked immunosorbent assay for the detection of aflatoxin B1[J].ACS Applied Materials and Interfaces, 2021, 13(22):25 738-25 747.
[17] YE W C, HUANG H, YANG W W, et al.Ultrathin polydopamine film coated gold nanoparticles:A sensitive, uniform, and stable SHINERS substrate for detection of benzotriazole[J].Analyst, 2017, 142(18):3459-3467.
[18] XU S L, ZHANG G G, FANG B L, et al.Lateral flow immunoassay based on polydopamine-coated gold nanoparticles for the sensitive detection of Zearalenone in maize[J].ACS Applied Materials &Interfaces, 2019, 11(34):31283-31290.
[19] 杜艳军, 李小燕, 刘义保, 等.多巴胺包覆纳米普鲁士蓝的制备及其对Sr~(2+)的吸附性能研究[J].有色金属工程, 2021, 11(12):115-121.
DU Y J, LI X Y, LIU Y B, et al.Preparation of dopamine coated nano-prussian blue and study on its adsorption performance for Sr 2+[J].Nonferrous Metals Engineering, 2021,11(12):115-121.
[20] SHAO Y N, DUAN H, GUO L, et al.Quantum dot nanobead-based multiplexed immunochromatographic assay for simultaneous detection of aflatoxin B1 and zearalenone[J].Analytica Chimica Acta, 2018, 1025:163-171.
[21] BU T, BAI F E, SUN X Y, et al.An innovative Prussian blue nanocubes decomposition-assisted signal amplification strategy suitable for competitive lateral flow immunoassay to sensitively detect aflatoxin B1[J].Food Chemistry, 2021, 344:128711.