[1] 刘丹梅, 姜吉禹, 杨君. 菊芋的生态功能研究[J]. 北方园艺, 2009(10):140-142.
LIU D M, JIANG J Y, YANG J. Ecological functions of Jerusalem artichoke[J]. Northern Horticulture, 2009(10):140-142.
[2] 鹿天阁, 周景玉, 马义, 等. 优良的防沙治沙植物: 菊芋[J]. 辽宁林业科技, 2007(2):58-60.
LU T G, ZHOU J Y, MA Y, et al. Jerusalem artichoke-an excellent sand control plant[J]. Liaoning Forestry Science and Technology, 2007(2):58-60.
[3] 杨明俊, 王亮, 吴婧, 等. 菊芋叶黄酮类化合物的体外抗氧化活性研究[J]. 贵州农业科学, 2011, 39(4):52-54.
YANG M J, WANG L, WU J, et al. Study on antioxidant activity of flavonoids from Helianthus tuberosus leaves in vitro[J]. Guizhou Agricultural Sciences, 2011, 39(4):52-54.
[4] 魏凌云, 王建华, 郑晓冬, 等. 菊粉研究的回顾与展望[J]. 食品与发酵工业, 2005, 31(7):81-85.
WEI L Y, WANG J H, ZHENG X D, et al. Review and prospects of the inulin research[J]. Food and Fermentation Industries, 2005, 31(7):81-85.
[5] 孙纪录, 贾英民, 桑亚新. 菊芋资源的开发利用[J]. 食品科技, 2003, 28(1):27-29.
SUN J L, JIA Y M, SANG Y X. The development and utilization of Jerusalem artichoke resource[J]. Food Science and Technology, 2003, 28(1):27-29.
[6] LI L L, LI L, WANG Y P, et al. Biorefinery products from the inulin-containing crop Jerusalem artichoke[J]. Biotechnology Letters, 2013, 35(4):471-477.
[7] LIAVA V, KARKANIS A, DANALATOS N, et al. Cultivation practices, adaptability and phytochemical composition of Jerusalem artichoke (Helianthus tuberosus L.): A weed with economic value[J]. Agronomy, 2021, 11(5):914.
[8] 汪悦, 薛夫光, 蒋林树, 等. 菊芋饲料的营养价值、生物活性及其对动物生理功能的调控作用[J]. 动物营养学报, 2020, 32(2):497-507.
WANG Y, XUE F G, JIANG L S, et al. Nutritional value and biological activity of Jerusalem artichoke feed and its regulation effects on animal physiological function[J]. Chinese Journal of Animal Nutrition, 2020, 32(2):497-507.
[9] 张海娟. 不同产地菊芋叶片中绿原酸含量变化及其提取、分离技术研究[D]. 南京: 南京农业大学, 2010.
ZHANG H J. Study on extraction and separation technology of chlorogenic acid content variation in Jerusalem artichoke(Helianthus tuberosus L.)leaves from different producing areas[D]. Nanjing: Nanjing Agricultural University, 2010.
[10] 赵俊宏, 王红星, 曹长青, 等. 菊芋叶片中绿原酸的提取工艺优化及动态含量研究[J]. 河南科学, 2021, 39(12):1935-1940.
ZHAO J H, WANG H X, CAO C Q, et al. Extraction process optimization and dynamic content of chlorogenic acid from Helianthus tuberosus leaves[J]. Henan Science, 2021, 39(12):1935-1940.
[11] YUAN X Y, CHENG M C, GAO M Z, et al. Cytotoxic constituents from the leaves of Jerusalem artichoke (Helianthus tuberosus L.) and their structure-activity relationships[J]. Phytochemistry Letters, 2013, 6(1):21-25.
[12] 苗芹, 叶明国, 刘苏静, 等. 高效液相色谱法测定菊芋叶和向日葵叶中绿原酸[J]. 化学与生物工程, 2017, 34(2):63-67.
MIAO Q, YE M G, LIU S J, et al. Determination of contents of chlorogenic acid in Helianthus tuberosus L. leaves and Helianthus annuus L. leaves by HPLC[J]. Chemistry & Bioengineering, 2017, 34(2):63-67.
[13] 张海娟, 刘玲, 郑晓涛, 等. 菊芋叶片绿原酸的提取工艺条件优化研究[J]. 食品工业科技, 2011, 32(5):261-262; 265.
ZHANG H J, LIU L, ZHENG X T, et al. Study on optimization of extraction technology of chlorogenic acid in Helianthus tuberosus leaves[J]. Science and Technology of Food Industry, 2011, 32(5):261-262, 265.
[14] 孙鹏程. 菊芋叶片中高纯度绿原酸的规模化制备工艺研究[D]. 沈阳: 辽宁大学, 2014.
SUN P C. Study on large-scale preparation of high purity chlorogenic acid from Helianthus tuberosus L. leaves[D]. Shenyang: Liaoning University, 2014.
[15] 郑晓涛, 隆小华, 刘玲, 等. 菊芋叶总黄酮提取工艺优化及含量动态变化[J]. 天然产物研究与开发, 2012, 24(11):1642-1645, 1689.
ZHENG X T, LONG X H, LIU L, et al. Extraction and dynamic content of total flavonoids in leaves of Helianthus tuberosus[J]. Natural Product Research and Development, 2012, 24(11):1642-1645; 1689.
[16] 何舒澜, 朱扶蓉, 朱宏阳, 等. 响应面法优化组培菊芋叶总黄酮提取工艺及其抑菌活性研究[J]. 福建农业学报, 2017, 32(8):897-904.
HE S L, ZHU F R, ZHU H Y, et al. Optimization of flavonoids extraction from leaves of Helianthus tuberosus L. by response surface methodology and determination of antimicrobial activity of resulting extract[J]. Fujian Journal of Agricultural Sciences, 2017, 32(8):897-904.
[17] 叶礼卉. 微波和微生物预处理对菊芋秸秆生物质成分利用的影响研究[D]. 合肥: 合肥工业大学, 2021.
YE L H. Effect of microwave and microbial pretreatment on utilization of biomass components of Jerusalem artichoke straw[D]. Hefei: Hefei University of Technology, 2021.
[18] 马剑, 张宏志, 王愈, 等. 菊芋叶多酚的超声辅助提取及抗氧化活性研究[J]. 保鲜与加工, 2021, 21(11):50-57.
MA J, ZHANG H Z, WANG Y, et al. Study on ultrasonic-assisted extraction and antioxidant activity of polyphenols from Jerusalem artichoke leaves[J]. Storage and Process, 2021, 21(11):50-57.
[19] OSTOLSKI M, ADAMCZAK M, BRZOZOWSKI B, et al. Screening of functional compounds in supercritical carbon dioxide extracts from perennial herbaceous crops[J]. Agriculture, 2021, 11(6):488.
[20] 庄英斌, 刘军海, 郭景学. 天然活性多酚提取、纯化及功能性研究进展[J]. 粮食与油脂, 2012, 25(8):44-48.
ZHUANG Y B, LIU J H, GUO J X. Research progress for natural active polyphenol extraction, purification and its functionality[J]. Cereals & Oils, 2012, 25(8):44-48.
[21] 高明哲, 肖红斌, 谭成玉, 等. 菊芋叶中绿原酸提取工艺研究[C].全国第七届中医药继承创新与发展研讨会文集. 北京:中华中医药杂志社, 2008.
GAO M Z, XIAO H B, TAN C Y, et al. Study on extraction process of chlorogenic acid in Helianthus tuberosus Linn leaves[C]. Proceedings of the 7th National Symposium on Inheritance, Innovation and Development of Chinese Medicine. Beijing: China Journal of Traditional Chinese Medicine and Pharmacy. 2008.
[22] 黎海彬, 王邕, 李俊芳, 等. 微波辅助提取技术在天然产物提取中的应用[J]. 现代食品科技, 2005, 21(3):148-150.
LI H B, WANG Y, LI J F, et al. Application of microwave assisted extraction technology to extraction of natural products[J]. Guangzhou Food Science and Technology, 2005, 21(3):148-150.
[23] WEN C T, ZHANG J X, ZHANG H H, et al. Advances in ultrasound assisted extraction of bioactive compounds from cash crops-A review[J]. Ultrasonics Sonochemistry, 2018, 48:538-549.
[24] GUNNARSSON I B, SVENSSON S E, JOHANSSON E, et al. Potential of Jerusalem artichoke (Helianthus tuberosus L.) as a biorefinery crop[J]. Industrial Crops and Products, 2014, 56:231-240.
[25] 叶代勇, 黄洪, 傅和青, 等. 纤维素化学研究进展[J]. 化工学报, 2006, 57(8):1782-1791.
YE D Y, HUANG H, FU H Q, et al. Advances in cellulose chemistry[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(8):1782-1791.
[26] TERRETT O M, DUPREE P. Covalent interactions between lignin and hemicelluloses in plant secondary cell walls[J]. Current Opinion in Biotechnology, 2019, 56:97-104.
[27] DZIEKON'SKA-KUBCZAK U, BERŁOWSKA J, DZIUGAN P, et al. Nitric acid pretreatment of Jerusalem artichoke stalks for enzymatic saccharification and bioethanol production[J]. Energies, 2018, 11(8):2153.
[28] 相瑞娟, 尹思静, 侯胜博, 等. 菊芋秸秆的稀酸水解及乙醇发酵[J]. 现代化工, 2015, 35(5):81-84.
XIANG R J, YIN S J, HOU S B, et al. Ethanol production using stalk of Jerusalem artichoke by Kluyveromyces marxianus[J]. Modern Chemical Industry, 2015, 35(5):81-84.
[29] LI K, QIN J C, LIU C G, et al. Optimization of pretreatment, enzymatic hydrolysis and fermentation for more efficient ethanol production by Jerusalem artichoke stalk[J]. Bioresource Technology, 2016, 221:188-194.
[30] KHATUN M M, LI Y H, LIU C G, et al. Fed-batch saccharification and ethanol fermentation of Jerusalem artichoke stalks by an inulinase producing Saccharomyces cerevisiae MK01[J]. RSC Advances, 2015, 5(129):107112-107118.
[31] LI M, WANG J, YANG Y Z, et al. Alkali-based pretreatments distinctively extract lignin and pectin for enhancing biomass saccharification by altering cellulose features in sugar-rich Jerusalem artichoke stem[J]. Bioresource Technology, 2016, 208:31-41.
[32] KIM S, PARK J M, KIM C H. Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces marxianus CBS1555[J]. Applied Biochemistry and Biotechnology, 2013, 169(5):1531-1545.
[33] DZIEKOŃSKA-KUBCZAK U, BERŁOWSKA J, DZIUGAN P, et al. Two-stage pretreatment to improve saccharification of oat straw and Jerusalem artichoke biomass[J]. Energies, 2019, 12(9):1715.
[34] LI P, CAI D, ZHANG C W, et al. Comparison of two-stage acid-alkali and alkali-acid pretreatments on enzymatic saccharification ability of the sweet sorghum fiber and their physicochemical characterizations[J]. Bioresource Technology, 2016, 221:636-644.
[35] 郭振强, 张勇, 曹运齐, 等. 燃料乙醇发酵技术研究进展[J]. 生物技术通报, 2020, 36(1):238-244.
GUO Z Q, ZHANG Y, CAO Y Q, et al. Research progress of fuel ethanol fermentation technology[J]. Biotechnology Bulletin, 2020, 36(1):238-244.
[36] VOHRA M, MANWAR J, MANMODE R, et al. Bioethanol production: Feedstock and current technologies[J]. Journal of Environmental Chemical Engineering, 2014, 2(1):573-584.
[37] XUE C, ZHANG X T, WANG J F, et al. The advanced strategy for enhancing biobutanol production and high-efficient product recovery with reduced wastewater generation[J]. Biotechnology for Biofuels, 2017, 10:148.
[38] 孟艳, 李屹, 陈来生, 等. HCl和NaOH预处理对菊芋秸秆产甲烷潜力的影响[J]. 可再生能源, 2023, 41(2):174-179.
MENG Y, LI Y, CHEN L S, et al. Assessment of biomethane production from Jerusalem artichoke straw using NaOH and HCl pretreatment[J]. Renewable Energy Resources, 2023, 41(2):174-179.
[39] LI D, DAI J Y, XIU Z L. A novel strategy for integrated utilization of Jerusalem artichoke stalk and tuber for production of 2, 3-butanediol by Klebsiella pneumoniae[J]. Bioresource Technology, 2010, 101(21):8342-8347.
[40] AKRAM W, GARUD N, JOSHI R. Role of inulin as prebiotics on inflammatory bowel disease[J]. Drug Discoveries & Therapeutics, 2019, 13(1):1-8.
[41] SHOAIB M, SHEHZAD A, OMAR M, et al. Inulin: Properties, health benefits and food applications[J]. Carbohydrate Polymers, 2016, 147:444-454.
[42] LI W C, ZHANG J, YU C W, et al. Extraction, degree of polymerization determination and prebiotic effect evaluation of inulin from Jerusalem artichoke[J]. Carbohydrate Polymers, 2015, 121:315-319.
[43] RADOVANOVIC A M, MILOVANOVIC O Z, KIPIC M Z, et al. Characterization of bread enriched with Jerusalem artichoke powder content[J]. Journal of Food and Nutrition Research, 2014, 2(12):895-898.
[44] 胡雅婕, 高海燕, 孙俊良, 等. 菊粉特性及其对馒头品质的影响研究[J]. 食品工业科技, 2016, 37(15):60-65.
HU Y J, GAO H Y, SUN J L, et al. Charactoristics of inulin and its effects on the quality of steamed bread[J]. Science and Technology of Food Industry, 2016, 37(15):60-65.
[45] WANG D, LI F L, WANG S A. Engineering a natural Saccharomyces cerevisiae strain for ethanol production from inulin by consolidated bioprocessing[J]. Biotechnology for Biofuels, 2016, 9:96.
[46] ZHAO X, WU S G, HU C M, et al. Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4[J]. Journal of Industrial Microbiology & Biotechnology, 2010, 37(6):581-585.
[47] CHOI H Y, RYU H K, PARK K M, et al. Direct lactic acid fermentation of Jerusalem artichoke tuber extract using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis[J]. Bioresource Technology, 2012, 114:745-747.
[48] LIM S H, RYU J M, LEE H, et al. Ethanol fermentation from Jerusalem artichoke powder using Saccharomyces cerevisiae KCCM50549 without pretreatment for inulin hydrolysis[J]. Bioresource Technology, 2011, 102(2):2109-2111.
[49] ZHANG T, CHI Z, CHI Z M, et al. Expression of the inulinase gene from the marine-derived Pichia guilliermondii in Saccharomyces sp. W0 and ethanol production from inulin[J]. Microbial Biotechnology, 2010, 3(5):576-582.
[50] ZHAO C H, ZHANG T, LI M, et al. Single cell oil production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a[J]. Process Biochemistry, 2010, 45(7):1121-1126.
[51] GE X Y, QIAN H, ZHANG W G. Improvement of L-lactic acid production from Jerusalem artichoke tubers by mixed culture of Aspergillus niger and Lactobacillus sp[J]. Bioresource Technology, 2009, 100(5):1872-1874.
[52] SHI Z M, WEI P L, ZHU X C, et al. Efficient production of l-lactic acid from hydrolysate of Jerusalem artichoke with immobilized cells of Lactococcus lactis in fibrous bed bioreactors[J]. Enzyme and Microbial Technology, 2012, 51(5):263-268.
[53] WANG L M, XUE Z W, ZHAO B, et al. Jerusalem artichoke powder: A useful material in producing high-optical-purity l-lactate using an efficient sugar-utilizing thermophilic Bacillus coagulans strain[J]. Bioresource Technology, 2013, 130:174-180.
[54] LI L X, CHEN C, LI K, et al. Efficient simultaneous saccharification and fermentation of inulin to 2, 3-butanediol by thermophilic Bacillus licheniformis ATCC 14580[J]. Applied and Environmental Microbiology, 2014, 80(20):6458-6464.
[55] FAGES J, MULARD D, ROUQUET J J, et al. 2, 3-Butanediol production from Jerusalem artichoke, Helianthus tuberosus, by Bacillus polymyxa ATCC 12321. Optimization of kLa profile[J]. Applied Microbiology and Biotechnology, 1986, 25(3):197-202.
[56] GAO J, XU H, LI Q J, et al. Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R, R-2, 3-butanediol[J]. Bioresource Technology, 2010, 101(18):7076-7082.
[57] SUN L H, WANG X D, DAI J Y, et al. Microbial production of 2, 3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae[J]. Applied Microbiology and Biotechnology, 2009, 82(5):847-852.
[58] SAWICKA B, DANILCˇENKO H, JARIENE E, et al. Nutritional value of Jerusalem artichoke tubers (Helianthus tuberosus L.) grown in organic system under Lithuanian and Polish conditions[J]. Agriculture, 2021, 11(5):440.
[59] SAWICKA B, SKIBA D, PSZCZÓÅŁKOWSKI P, et al. Jerusalem artichoke (Helianthus tuberosus L.) as a medicinal plant and its natural products[J]. Cellular and Molecular Biology, 2020, 66(4):160-177.
[60] 赵孟良, 刘明池, 钟启文, 等. 菊芋种质资源主要矿质营养元素含量特征与分析评价[J]. 河北农业大学学报, 2017, 40(4):31-36.
ZHAO M L, LIU M C, ZHONG Q W, et al. Content characteristics and analysis evaluation of main mineral nutrient elements in 29 Helianthus tuberosus[J]. Journal of Agricultural University of Hebei, 2017, 40(4):31-36.
[61] MARIADOSS A V A, PARK S, SARAVANAKUMAR K, et al. Ethyl acetate fraction of Helianthus tuberosus L. induces anti-diabetic, and wound-healing activities in insulin-resistant human liver cancer and mouse fibroblast cells[J]. Antioxidants, 2021, 10(1):99.
[62] YU Q H, ZHAO J J, XU Z K, et al. Inulin from Jerusalem artichoke tubers alleviates hyperlipidemia and increases abundance of bifidobacteria in the intestines of hyperlipidemic mice[J]. Journal of Functional Foods, 2018, 40:187-196.
[63] SHAO T L, YUAN P C, ZHANG W Z, et al. Preparation and characterization of sulfated inulin-type fructans from Jerusalem artichoke tubers and their antitumor activity[J]. Carbohydrate Research, 2021, 509:108422.
[64] KANG Y M, LEE K Y, AN H J. Inhibitory effects of Helianthus tuberosus ethanol extract on Dermatophagoides farina body-induced atopic dermatitis mouse model and human keratinocytes[J]. Nutrients, 2018, 10(11):1657.
[65] WANG Z Q, HWANG S H, LEE S Y, et al. Fermentation of purple Jerusalem artichoke extract to improve the α-glucosidase inhibitory effect in vitro and ameliorate blood glucose in db/db mice[J]. Nutrition Research and Practice, 2016, 10(3):282-287.