[1] GAL-MOR O, BOYLE E C, GRASSL G A.Same species, different diseases:How and why typhoidal and non-typhoidal Salmonella enterica serovars differ[J].Frontiers in Microbiology, 2014, 5:391.
[2] 赵伟, 王扬眉, 潘迎捷, 等.人工模拟胃肠道模型在食源性致病菌异质性研究中的应用进展[J].食品科学, 2021, 42(23):268-274.
ZHAO W, WANG Y M, PAN Y J, et al.Progress in the application of simulated gastrointestinal models to study the heterogeneity of foodborne pathogens[J].Food Science, 2021, 42(23):268-274.
[3] BALÁZSI G, VAN OUDENAARDEN A, COLLINS J J.Cellular decision making and biological noise:From microbes to mammals[J].Cell, 2011, 144(6):910-925.
[4] BUMANN D.Heterogeneous host-pathogen encounters:Act locally, think globally[J].Cell Host & Microbe, 2015, 17(1):13-19.
[5] ACKERMANN M.A functional perspective on phenotypic heterogeneity in microorganisms[J].Nature Reviews Microbiology, 2015, 13(8):497-508.
[6] WEIGEL W A, DERSCH P.Phenotypic heterogeneity:A bacterial virulence strategy[J].Microbes and Infection, 2018, 20(9-10):570-577.
[7] EVANS C R, FAN Y Q, WEISS K, et al.Errors during gene expression:Single-cell heterogeneity, stress resistance, and microbe-host interactions[J].mBio, 2018, 9(4):e01018.
[8] SILVERMAN M, ZIEG J, HILMEN M, et al.Phase variation in Salmonella:Genetic analysis of a recombinational switch[J].Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(1):391-395.
[9] GARCÍA-PASTOR L, PUERTA-FERNÁNDEZ E, CASADESÚS J.Bistability and phase variation in Salmonella enterica[J].Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 2019, 1862(7):752-758.
[10] ARNOLDINI M, VIZCARRA I A, PEÑA-MILLER R, et al.Bistable expression of virulence genes in Salmonella leads to the formation of an antibiotic-tolerant subpopulation[J].PLoS Biology, 2014, 12(8):e1001928.
[11] SAINI S, ELLERMEIER J R, SLAUCH J M, et al.The role of coupled positive feedback in the expression of the SPI1 type three secretion system in Salmonella[J].PLoS Pathogens, 2010, 6(7):e1001025.
[12] BUMANN D, CUNRATH O.Heterogeneity of Salmonella-host interactions in infected host tissues[J].Current Opinion in Microbiology, 2017, 39:57-63.
[13] KREIBICH S, HARDT W D.Experimental approaches to phenotypic diversity in infection[J].Current Opinion in Microbiology, 2015, 27:25-36.
[14] MILLS E, AVRAHAM R.Breaking the population barrier by single cell analysis:One host against one pathogen[J].Current Opinion in Microbiology, 2017, 36:69-75.
[15] HARE P J, LAGREE T J, BYRD B A, et al.Single-cell technologies to study phenotypic heterogeneity and bacterial persisters[J].Microorganisms, 2021, 9(11):2277.
[16] NUSS A M, SCHUSTER F, ROSELIUS L, et al.A precise temperature-responsive bistable switch controlling Yersinia virulence[J].PLoS Pathogens, 2016, 12(12):e1006091.
[17] GOLLAN B, GRABE G, MICHAUX C, et al.Bacterial persisters and infection:Past, present, and progressing[J].Annual Review of Microbiology, 2019, 73:359-385.
[18] ZHANG Z R, CLAESSEN D, ROZEN D E.Understanding microbial divisions of labor[J].Frontiers in Microbiology, 2016, 7:2070.
[19] WEST S A, COOPER G A.Division of labour in microorganisms:An evolutionary perspective[J].Nature Reviews Microbiology, 2016, 14(11):716-723.
[20] ACKERMANN M, STECHER B, FREED N E, et al.Self-destructive cooperation mediated by phenotypic noise[J].Nature, 2008, 454(7207):987-990.
[21] COOPER G A, LIU M, PEÑA J, et al.The evolution of mechanisms to produce phenotypic heterogeneity in microorganisms[J].Nature Communications, 2022, 13:195.
[22] RYAN D, PATI N B, OJHA U K, et al.Global transcriptome and mutagenic analyses of the acid tolerance response of Salmonella enterica serovar typhimurium[J].Applied and Environmental Microbiology, 2015, 81(23):8054-8065.
[23] STEELE-MORTIMER O.The Salmonella-containing vacuole:Moving with the times[J].Current Opinion in Microbiology,2008,11(1):38-45.
[24] CHEN S J, FENG Z, SUN H L, et al.Biofilm-formation-related genes csgD and bcsA promote the vertical transmission of Salmonella enteritidis in chicken[J].Frontiers in Veterinary Science, 2021, 7:625049.
[25] WANG X Y, QUINN P J.Endotoxins:Lipopolysaccharides of Gram-negative Bacteria[M]//Subcellular Biochemistry.Dordrecht:Springer Netherlands, 2010:3-25.
[26] BONIFIELD H R, HUGHES K T.Flagellar phase variation in Salmonella enterica is mediated by a posttranscriptional control mechanism[J].Journal of Bacteriology, 2003, 185(12):3567-3574.
[27] LEDEBOER N A, FRYE J G, MCCLELLAND M, et al.Salmonella enterica serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium[J].Infection and Immunity, 2006, 74(6):3156-3169.
[28] 丁雪燕, 王思权, 庞胜美, 等.细菌长极性菌毛的研究进展[J].中国兽医学报, 2021, 41(2):373-380.
DING X Y, WANG S Q, PANG S M, et al.A review of bacterial long polar fimbriae[J].Chinese Journal of Veterinary Science, 2021, 41(2):373-380.
[29] BÄUMLER A J, TSOLIS R M, BOWE F A, et al.The pef fimbrial operon of Salmonella typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse[J].Infection and Immunity, 1996, 64(1):61-68.
[30] GARCÍA-PASTOR L, SÁNCHEZ-ROMERO M A, JAKOMIN M, et al.Regulation of bistability in the std fimbrial operon of Salmonella enterica by DNA adenine methylation and transcription factors HdfR, StdE and StdF[J].Nucleic Acids Research, 2019, 47(15):7929-7941.
[31] HUMPHRIES A D, RAFFATELLU M, WINTER S, et al.The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons[J].Molecular Microbiology, 2003, 48(5):1357-1376.
[32] QUE F X, WU S Y, HUANG R.Salmonella pathogenicity island 1(SPI-1) at work[J].Current Microbiology, 2013, 66(6):582-587.
[33] CLARK L, PERRETT C A, MALT L, et al.Differences in Salmonella enterica serovar Typhimurium strain invasiveness are associated with heterogeneity in SPI-1 gene expression[J].Microbiology, 2011, 157(Pt 7):2072-2083.
[34] JENNINGS E, THURSTON T L M, HOLDEN D W.Salmonella SPI-2 type Ⅲ secretion system effectors:Molecular mechanisms and physiological consequences[J].Cell Host & Microbe, 2017, 22(2):217-231.
[35] HELAINE S, CHEVERTON A M, WATSON K G, et al.Internalization of Salmonella by macrophages induces formation of nonreplicating persisters[J].Science, 2014, 343(6167):204-208.
[36] KARZAI A W, ROCHE E D, SAUER R T.The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue[J].Nature Structural Biology, 2000, 7(6):449-455.
[37] WALTHERS D, LI Y, LIU Y J, et al.Salmonella enterica response regulator SsrB relieves H-NS silencing by displacing H-NS bound in polymerization mode and directly activates transcription[J].The Journal of Biological Chemistry, 2011, 286(3):1895-1902.
[38] AHMAD I, CIMDINS A, BESKE T, et al.Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium[J].BMC Microbiology, 2017, 17(1):1-12.
[39] MIKOĿAJCZYK A, ZĿOTKOWSKA D.Neuroimmunological implications of subclinical lipopolysaccharide from Salmonella enteritidis[J].International Journal of Molecular Sciences, 2018, 19(10):3274.
[40] KRÖGER C, STOLZ J, FUCHS T M.Myo-inositol transport by Salmonella enterica serovar Typhimurium[J].Microbiology, 2010, 156(1):128-138.
[41] 郭志燕, 周明旭, 段强德, 等.细菌鞭毛的致病性及其免疫学应用的研究进展[J].微生物学报, 2014, 54(3):251-260.
GUO Z Y, ZHOU M X, DUAN Q D, et al.Advance on the pathogenicity and immunological application of bacterial flagella: A review[J].Acta Microbiologica Sinica, 2014, 54(3):251-260.
[42] HORSTMANN J A, LUNELLI M, CAZZOLA H, et al.Methylation of Salmonella typhimurium flagella promotes bacterial adhesion and host cell invasion[J].Nature Communications, 2020, 11(1):2013.
[43] HORSTMANN J A, ZSCHIESCHANG E, TRUSCHEL T, et al.Flagellin phase-dependent swimming on epithelial cell surfaces contributes to productive Salmonella gut colonisation[J].Cellular Microbiology, 2017, 19(8):e12739.
[44] 王思权, 丁雪燕, 朱国强.沙门氏菌Ⅰ型菌毛研究进展[J].生命科学, 2021, 33(2):231-237.
WANG S Q, DING X Y, ZHU G Q.The research progress of Salmonella type Ⅰ fimbriae[J].Chinese Bulletin of Life Sciences, 2021, 33(2):231-237.
[45] 闫玉卿, 董鹏程, 张一敏, 等.沙门氏菌生物被膜的结构、调控因子与控制措施研究进展[J].生物加工过程, 2021, 19(6):676-685.
YAN Y Q, DONG P C, ZHANG Y M, et al.Research progress on the structures, regulators and control measures of Salmonella biofilm:A review[J].Chinese Journal of Bioprocess Engineering, 2021, 19(6):676-685.
[46] GUPTA P, SARKAR S, DAS B, et al.Biofilm, pathogenesis and prevention:A journey to break the wall:A review[J].Archives of Microbiology, 2016, 198(1):1-15.
[47] AHMAD I, LAMPROKOSTOPOULOU A, LE GUYON S, et al.Complex c-di-GMP signaling networks mediate transition between virulence properties and biofilm formation in Salmonella enterica serovar Typhimurium[J].PLoS One, 2011, 6(12):e28351.
[48] 董洪燕, 张小荣, 潘志明, 等.转座子随机插入鉴定肠炎沙门氏菌生物膜形成相关基因[J].微生物学报, 2008, 48(7):869-873.
DONG H Y, ZHANG X R, PAN Z M, et al.Identification of genes for biofilm formation in a Salmonella enteritidis strain by transposon mutagenesis[J].Acta Microbiologica Sinica, 2008, 48(7):869-873.
[49] 代勤龙, 孔庆科, 刘青, 等.肠道沙门氏菌O-抗原多糖的研究进展[J].微生物学通报, 2016, 43(8):1829-1835.
DAI Q L, KONG Q K, LIU Q, et al.Research advances in O-antigen polysaccharide of Salmonella enterica[J].Microbiology China, 2016, 43(8):1829-1835.
[50] DAVIES M R, BROADBENT S E, HARRIS S R, et al.Horizontally acquired glycosyltransferase operons drive salmonellae lipopolysaccharide diversity[J].PLoS Genetics, 2013, 9(6):e1003568.
[51] HELLINCKX J, FUCHS T M.Hysteresis in myo-inositol utilization by Salmonella typhimurium[J].MicrobiologyOpen, 2017, 6(2):e00431.
[52] HELLINCKX J, HEERMANN R, FELSL A, et al.High binding affinity of repressor IolR avoids costs of untimely induction of myo-inositol utilization by Salmonella typhimurium[J].Scientific Reports, 2017, 7:44362.
[53] KRÖGER C, FUCHS T M.Characterization of the myo-inositol utilization island of Salmonella enterica serovar Typhimurium[J].Journal of Bacteriology, 2009, 191(2):545-554.