凝胶剂的含量和比例、植物油基质是影响油凝胶结晶特性和加工功能的重要因素。该研究以植物甾醇和γ-谷维素为凝胶剂,牡丹籽油和葵花籽油为基质油制备高含量α-亚麻酸油凝胶,探讨了植物甾醇与γ-谷维素的质量比以及基质油对油凝胶外观、硬度、黏度、微观结构、流变和热力学性质的影响。结果表明,在4 ℃下,当m(植物甾醇)∶m(γ-谷维素)=40∶60,添加量为8%(质量分数)时,油凝胶形成的速度最快,硬度和黏度最大,熔点也最高;与葵花籽油凝胶相比,此条件下牡丹籽油凝胶的硬度更大(210.70 N),凝胶时间更短(0.5 h),熔点更高(55.22 ℃)。油凝胶制备时,可通过调整植物甾醇与γ-谷维素的比例来获得所需的晶型和凝胶网络结构,并由此获得理想的硬度、黏度、熔点和透明度等,以适应特定食品加工的需求。该研究为后续基于油凝胶的新型功能黄油和功能奶油的制备提供了理论基础。
The content of the gel agent and vegetable oil matrix were the important factors affecting the crystallization characteristics and processing function of oleogel.In this study, a high content of α-linolenic acid oleogel was prepared with phytosterol and γ-oryzanol as gel agents and peony seed oil and sunflower seed oil as stroma oils.The effects of the mass ratio of phytosterol to γ-oryzanol and oil matrix on the appearance, hardness, viscosity, microstructure, rheology, and thermodynamic properties of the oleogels were investigated.Results showed that oleogel formed by using 8% of phytosterol-γ-oryzanol (with a mass ratio of 40∶60) at 4 ℃ had the highest hardness, viscosity, and melting point, meanwhile, the time needed for its formation was the shortest.Compared with sunflower oil oleogel, peony seed oil oleogel had a higher hardness (210.70 N), a shorter gel formation time (0.5 h), and a higher melting point (55.22 ℃).An oleogel with a specific crystal shape and gel network structure could be prepared by adjusting the ratio of phytosterol to γ-oryzanol, which possesses an ideal hardness, viscosity, melting point, and transparency, and could be used for specific food processing.This study provides a theoretical basis for the preparation of new functional butter and functional cream based on oleogel.
[1] PEHLIVANOĞLU H, DEMIRCI M, TOKER O S, et al.Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations:Production and food-based applications[J].Critical Reviews in Food Science and Nutrition, 2018, 58(8):1330-1341.
[2] LIMPIMWONG W, KUMRUNGSEE T, KATO N, et al.Rice bran wax oleogel:A potential margarine replacement and its digestibility effect in rats fed a high-fat diet[J].Journal of Functional Foods, 2017, 39:250-256.
[3] ZETZL A K, MARANGONI A G, BARBUT S.Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters[J].Food & Function, 2012, 3(3):327-337.
[4] HWANG H S, FHANER M, WINKLER-MOSER J K, et al.Oxidation of fish oil oleogels formed by natural waxes in comparison with bulk oil[J].European Journal of Lipid Science and Technology, 2018, 120(5):1700378.
[5] ZHU Y J, BO Y C, LIU Y H.Dietary total fat, fatty acids intake, and risk of cardiovascular disease:A dose-response meta-analysis of cohort studies[J].Lipids in Health and Disease, 2019, 18(1):1-14.
[6] CHAVES K F, BARRERA-ARELLANO D, RIBEIRO A P B.Potential application of lipid organogels for food industry[J].Food Research International, 2018, 105:863-872.
[7] FAYAZ G, GOLI S A H, KADIVAR M, et al.Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread[J].LWT, 2017, 86:523-529.
[8] DANIEL J, RAJASEKHARAN R.Organogelation of plant oils and hydrocarbons by long-chain saturated FA, fatty alcohols, wax esters, and dicarboxylic acids[J].Journal of the American Oil Chemists’ Society, 2003, 80(5):417-421.
[9] DAVIDOVICH-PINHAS M, GRAVELLE A J, BARBUT S, et al.Temperature effects on the gelation of ethylcellulose oleogels[J].Food Hydrocolloids, 2015, 46:76-83.
[10] BOT A, DEN ADEL R, REGKOS C, et al.Structuring in β-sitosterol+γ-oryzanol-based emulsion gels during various stages of a temperature cycle[J].Food Hydrocolloids, 2011, 25(4):639-646.
[11] GRATTAN B.Plant sterols as anticancer nutrients:Evidence for their role in breast cancer[J].Nutrients, 2013, 5(2):359-387.
[12] ROGERS M A, BOT A, LAM R S H, et al.Multicomponent hollow tubules formed using phytosterol and γ-oryzanol-based compounds:An understanding of their molecular embrace[J].The Journal of Physical Chemistry A, 2010, 114(32):8278-8285.
[13] 任美洁. 基于米糠油油溶剂制备植物甾醇+γ-谷维素型凝胶油研究[J].现代食品, 2020(18):122-124.
REN M J.Preparation of phytosterol +γ-gluten based gel oil based on rice bran oil and oil solvent[J].Modern Food, 2020(18):122-124.
[14] 张欢, 孙尚德, 时紫云, 等.急冷温度及凝胶剂添加量对植物甾醇/谷维素油凝胶物理特性的影响[J].中国油脂, 2023, 48(3):90-94;122.
ZHANG H, SUN S D, SHI Z Y, et al.Effect of rapid cooling temperature and gelator dosage on the physical properties of phytosterol/oryzanol oleogels[J].China Oils and Fats, 2023, 48(3):90-94;122.
[15] MOSCHAKIS T, PANAGIOTOPOULOU E, KATSANIDIS E.Sunflower oil organogels and organogel-in-water emulsions (part I):Microstructure and mechanical properties[J].LWT, 2016, 73:153-161.
[16] 殷俊俊, 马传国, 王伟, 等.不同植物油对γ-谷维素与β-谷甾醇有机凝胶的影响[J].中国粮油学报, 2016, 31(5):87-91.
YIN J J, MA C G, WANG W, et al.Effect of oil type on γ-oryzanol and β-sitosterol-based organogels[J].Journal of the Chinese Cereals and Oils Association, 2016, 31(5):87-91.
[17] BOT A, VELDHUIZEN Y S J, DEN ADEL R, et al.Non-TAG structuring of edible oils and emulsions[J].Food Hydrocolloids, 2009, 23(4):1184-1189.
[18] 李丹, 赵月, 李婷婷, 等.油脂品种对肉桂酸基油脂凝胶形成及性质的影响[J].食品科学, 2018, 39(12):9-14.
LI D, ZHAO Y, LI T T, et al.Effect of oil type on the formation and properties of cinnamic acid-based oleogels[J].Food Science, 2018, 39(12):9-14.
[19] 刘宏, 刘慧敏, 冯国霞, 等.植物甾醇+γ-谷维素型凝胶油的制备及其影响因素的研究[J].中国油脂, 2015, 40(6):66-71.
LIU H, LIU H M, FENG G X, et al.Preparation of phytosterols + γ-oryzanol-based organogel and its influence factors[J].China Oils and Fats, 2015, 40(6):66-71.
[20] 李胜, 马传国, 刘君, 等.谷维素/谷甾醇与单甘酯复合凝胶油形成过程及分子作用特性[J].食品科学, 2018, 39(10):89-96.
LI S, MA C G, LIU J, et al.Formation of γ-oryzanol/β-sitosterol and monoglyceride organogels:Process and molecular mechanism studies[J].Food Science, 2018, 39(10):89-96.
[21] CHEN X W, CHEN Y J, WANG J M, et al.Tunable volatile release from organogel-emulsions based on the self-assembly of β-sitosterol and γ-oryzanol[J].Food Chemistry, 2017, 221:1491-1498.
[22] DONG L L, LYU M W, GAO X Y, et al.In vitrogastrointestinal digestibility of phytosterol oleogels:Influence of self-assembled microstructures on emulsification efficiency and lipase activity[J].Food & Function, 2020, 11(11):9503-9513.
[23] MATHESON A B, KOUTSOS V, DALKAS G, et al.Microstructure of β-sitosterol:γ-oryzanol edible organogels[J].Langmuir, 2017, 33(18):4537-4542.
[24] SAWALHA H, DEN ADEL R, VENEMA P, et al.Organogel-emulsions with mixtures of β-sitosterol and γ-oryzanol:Influence of water activity and type of oil phase on gelling capability[J].Journal of Agricultural and Food Chemistry, 2012, 60(13):3462-3470.