为研究中国新疆薰衣草蜂蜜的品质和风味特性,采用现有标准方法对薰衣草蜂蜜的理化指标(水分、酸度、淀粉酶值、5-羟甲基糠醛、还原糖、蔗糖)进行测定,同时利用顶空固相微萃取(headspace solid phase micro-extraction, HS-SPME)-气相色谱质谱联用(gas chromatography-mass spectrometry, GC-MS)技术对薰衣草蜂蜜的挥发性成分进行测定。通过对理化指标和挥发性成分进行分析,研究结果表明,21批新疆产区薰衣草蜂蜜样品的水分含量为14.4%~20.7%,酸度为11.4~39.3 mL/kg,淀粉酶值为4.2~27.7 mL/(g·h),5-羟甲基糠醛含量为1.6~12.0 mg/kg,还原糖含量为65.5%~75.0%,蔗糖含量为0.1%~5.8%,其中4批次蜂蜜样品蔗糖含量超过我国国家标准的要求(低于5%),但符合国际食品法典委员会标准的规定(低于15%),其他各项指标均符合国家和行业标准要求。新疆产区薰衣草蜂蜜中共发现挥发性物质75种,主要包括醇类(54.2%)、醛类(32.5%)和酸类(6.1%)等,含量较高的物质为正己醇(26.0%)、苯乙醛(20.0%)和正庚醇(13.1%)等。通过与现有文献中油菜蜜、枣花蜜和洋槐蜂蜜挥发性成分数据的比对,发现庚醛和己醛含量显著高于其余蜜源植物蜂蜜,同时,正庚醇和正己醇仅在薰衣草蜂蜜中被检出,综上,正庚醇、正己醇、庚醛和己醛可以作为新疆薰衣草蜂蜜的特征挥发性成分。
The physical and chemical parameters of lavender honey were detected based on published standards.The volatile compounds in lavender honey were determined by headspace solid-phase micro-extraction coupled with gas chromatography and mass spectrometry.Results showed that the contents of moisture, acidity, diastase number, and hydroxymethylfurfural were 14.4%-20.7%, 11.4-39.3 mL/kg, 4.2-27.7 mL/(g·h), and 1.6-12.0 mg/kg, respectively.The sum amount of the fructose and the glucose ranged from 65.5% to 75.0%, and the sucrose content was 0.1%-5.8%.The sucrose contents of four lavender honey exceeded the national standard of <5%, while meeting the CAC (Codex Alimentarius Commission) standard of <15% and all the other physical and chemical parameters met the requirements of national and industry standards.Seventy-five different volatile compounds were identified in lavender honey, and the alcohols (54.2%), aldehydes (32.5%), and acids (6.1%) were the main types of volatile compounds.The dominant compounds were hexanol (26.0%), phenylacetaldehyde (20.0%), and heptanol (13.1%).Compared with the published data of rape honey, jujube honey, and acacia honey, the results showed that heptanol and hexanol were only detected in lavender honey, and the contents of heptaldehyde and hexanal were both higher than that in other types of honey.In summary, heptaldehyde, hexanal, heptanol, and hexanol can be identified as the characteristic volatile component in lavender honey.
[1] GYERGYÁK K, BOROS B, MARTON K, et al. Bioactive constituents and antioxidant activity of some Carpathian basin honeys[J]. Natural Product Communications, 2016, 11(2):245-250.
[2] 何云中, 张峻豪, 史秀丽, 等. 新疆薰衣草蜜源植物及其蜂群管理要点[J]. 蜜蜂杂志, 2015, 35(10):32-33.
HE Y Z, ZHANG J H, SHI X L, et al. Key points of honey source plants and bee colony management of lavender in Xinjiang[J]. Journal of Bee, 2015, 35(10):32-33.
[3] ESTEVINHO M L, AFONSO S E, FEÁS X. Antifungal effect of lavender honey against Candida albicans, Candida krusei and Cryptococcus neoformans[J]. Journal of Food Science and Technology, 2011, 48(5):640-643.
[4] CASTRO-VÁZQUEZ L, LEON-RUIZ V, ALAÑON M E, et al. Floral origin markers for authenticating Lavandin honey (Lavandula angustifolia×latifolia). Discrimination from Lavender honey (Lavandula latifolia)[J]. Food Control, 2014, 37:362-370.
[5] ESCRICHE I, SOBRINO-GREGORIO L, CONCHADO A, et al. Volatile profile in the accurate labelling of monofloral honey. The case of lavender and thyme honey[J]. Food Chemistry, 2017, 226:61-68.
[6] PÉREZ R A, SÁNCHEZ-BRUNETE C, CALVO R M, et al. Analysis of volatiles from Spanish honeys by solid-phase microextraction and gas chromatography-mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2002, 50(9):2633-2637.
[7] 潘柳, 张琦, 毛秀丽, 等. 新疆薰衣草蜜活性成分的分析[J]. 食品科技, 2012, 37(8):70-74.
PAN L, ZHANG Q, MAO X L, et al. Analysis on the active ingredients of lavender honey from Xinjiang province[J]. Food Science and Technology, 2012, 37(8):70-74.
[8] 祝敏. 西北五种特色单花种蜂蜜花源特征性成分及其对酒精性胃损伤的保护作用研究[D]. 西安: 西北大学, 2021.
ZHU M. Characteristic components of five special monofloral honeys from Northwest China and the gastroprotective effect against ethanol-induced gastric injury[D]. Xi′an: Northwest University, 2021.
[9] 王桃红, 张少博, 张会敏, 等. 荞麦蜜中挥发性成分测定及其与成熟度的相关性分析[J]. 食品科学, 2020, 41(22):222-230.
WANG T H, ZHANG S B, ZHANG H M, et al. Determination of volatile components in buckwheat honey and correlation analysis with honey maturity[J]. Food Science, 2020, 41(22):222-230.
[10] 汪思凡, 曹振辉, 潘洪彬, 等. 蜂蜜化学成分及其主要生物学功能研究进展[J]. 食品研究与开发, 2018, 39(1):176-181.
WANG S F, CAO Z H, PAN H B, et al. Research progress on chemical composition and major biological function of honey[J]. Food Research and Development, 2018, 39(1):176-181.
[11] 董莹莹, 迟增钊, 迟玉森. 糖源蜜、花源蜜和市售蜂蜜品质的比较研究[J]. 食品研究与开发, 2021, 42(1):48-54.
DONG Y Y, CHI Z Z, CHI Y S. Comparative study on the quality of sugar source honey, flower source honey and commercial honey[J]. Food Research and Development, 2021, 42(1):48-54.
[12] BONTA V, DEZMIREAN D S, MĂRGHITAŞ L A, et al. Sugar spectrum, hydroxymethylfurfural and diastase activity in honey: A validated approach as indicator of possible adulteration[J]. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca Animal Science and Biotechnologies, 2020, 77(2):44.
[13] 王远. 荆条蜜的理化性质及其抗氧化活性研究[D]. 西安: 西北大学, 2015.
WANG Y. Study on physicochemical properties and antioxidant activity of Vitex negundo L[D]. Xi’an: Northwest University, 2015.
[14] 鞠锋清. 三种蜂蜜差异性探究与鉴别[D]. 泰安: 山东农业大学, 2019.
JU F Q. Exploration and identification of the differences of three honeys[D]. Taian: Shandong Agricultural University, 2019.
[15] 张丽珍, 曾志将, 郑云林, 等. 江西野桂花蜂蜜成分分析[J]. 食品科学, 2012, 33(10):195-199.
ZHANG L Z, ZENG Z J, ZHENG Y L, et al. Composition analysis of honey from Cinnamomum obtusifolium (roxb.) flowers grown in Jiangxi[J]. Food Science, 2012, 33(10):195-199.
[16] ZHANG Y Z, SI J J, LI S S, et al. Chemical analyses and antimicrobial activity of nine kinds of unifloral Chinese honeys compared to manuka honey (12+ and 20+)[J]. Molecules, 2021, 26(9):2778.
[17] 杨明华, 解道豪, 张昕, 等. 蓝莓蜜主要品质特性及挥发性成分分析[J]. 食品工业科技, 2022, 43(14):336-344.
YANG M H, XIE D H, ZHANG X, et al. Analysis of major quality characteristics and volatile components of blueberry honey[J]. Science and Technology of Food Industry, 2022, 43(14):336-344.
[18] WHITE J W Jr. Honey[M]. Amsterdam: Elsevier, 1978:287-374.
[19] SMANALIEVA J, SENGE B. Analytical and rheological investigations into selected unifloral German honey[J]. European Food Research and Technology, 2009, 229(1):107-113.
[20] 马天琛. 成熟洋槐蜜的鉴别方法及其生物活性研究[D]. 西安: 西北大学, 2020.
MA T C. Studies on the identification method and biological activity of mature acacia honey[D]. Xi′an: Northwest University, 2020.
[21] SE K W, IBRAHIM R K R, WAHAB R A, et al. Accurate evaluation of sugar contents in stingless bee (Heterotrigona itama) honey using a swift scheme[J]. Journal of Food Composition and Analysis, 2018, 66:46-54.
[22] PASCUAL-MATÉ A, OSÉS S M, MARCAZZAN G L, et al. Sugar composition and sugar-related parameters of honeys from the northern Iberian Plateau[J]. Journal of Food Composition and Analysis, 2018, 74:34-43.
[23] SIEGMUND B, URDL K, JUREK A, et al. “more than honey”: Investigation on volatiles from monovarietal honeys using new analytical and sensory approaches[J]. Journal of Agricultural and Food Chemistry, 2018, 66(10):2432-2442.
[24] RADOVIC B S, CARERI M, MANGIA A, et al. Contribution of dynamic headspace GC-MS analysis of aroma compounds to authenticity testing of honey[J]. Food Chemistry, 2001, 72(4):511-520.
[25] OZCAN-SINIR G, COPUR O U, BARRINGER S A. Botanical and geographical origin of Turkish honeys by selected-ion flow-tube mass spectrometry and chemometrics[J]. Journal of the Science of Food and Agriculture, 2020, 100(5):2198-2207.
[26] 王桃红. 蜂蜜挥发性成分分析与应用研究[D]. 保定: 河北农业大学, 2019.
WANG T H. Analysis and application of volatile components in honey[D]. Baoding: Hebei Agricultural University, 2019.
[27] CASTRO-VÁZQUEZ L, DÍAZ-MAROTO M C, GONZÁLEZ-VIÑAS M A, et al. Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis[J]. Food Chemistry, 2009, 112(4):1022-1030.