综述与专题评论

适配体传感器检测黄曲霉毒素的研究进展

  • 郭歌 ,
  • 王田林 ,
  • 李天歌 ,
  • 黄现青 ,
  • 陈云堂 ,
  • 王嘉楠 ,
  • 宋莲军
展开
  • 1(河南农业大学 食品科学技术学院,河南 郑州,450002)
    2(河南省科学院同位素研究所有限责任公司,河南 郑州,450002)
    3(中国农业大学 理学院,北京,100193)
第一作者:硕士研究生(宋莲军教授为通信作者,E-mail:slj69@126.com)

收稿日期: 2023-04-08

  修回日期: 2023-05-20

  网络出版日期: 2024-04-17

基金资助

河南省科技攻关项目(222102310331);国家自然科学基金项目(32101966);2022年河南省研究生联合培养基地项目(YJS2022JD16);河南省科学院重大科研聚焦项目(210104005);河南省科学院科技开放合作项目(220904004)

Research progress of aptasensors for the detection of aflatoxins

  • GUO Ge ,
  • WANG Tianlin ,
  • LI Tiange ,
  • HUANG Xianqing ,
  • CHEN Yuntang ,
  • WANG Jianan ,
  • SONG Lianjun
Expand
  • 1(College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China)
    2(Institute of Isotope Research, Henan Academy of Sciences, Zhengzhou 450002, China)
    3(College of Science, China Agricultural University, Beijing 100193, China)

Received date: 2023-04-08

  Revised date: 2023-05-20

  Online published: 2024-04-17

摘要

黄曲霉毒素是自然界已发现理化性质最稳定的一类真菌毒素,具有高毒性和致癌性。农产品和动物源食品中黄曲霉毒素的污染最为严重。因此,开发快速精准检测黄曲霉毒素的方法对保障人和动物健康具有重要意义。适配体作为一种新型识别分子,其易于合成、修饰、稳定性高且高亲和力的特点使其在构建生物传感器用于食品分析检测中扮演着关键角色。适配体传感器是指适配体与待检目标物特异性识别的过程转换为易于检测的物理化学信号,以实现目标物的快速精准检测。该文综述了近年来基于电化学法、比色法、荧光法、拉曼光谱法等开发的适配体传感器在检测黄曲霉毒素中的研究进展,探讨了其在检测过程中的优势及局限性,并进一步对其在未来发展中的前景进行展望,为新型适配体传感器的开发用于黄曲霉毒素的检测提供了参考。

本文引用格式

郭歌 , 王田林 , 李天歌 , 黄现青 , 陈云堂 , 王嘉楠 , 宋莲军 . 适配体传感器检测黄曲霉毒素的研究进展[J]. 食品与发酵工业, 2024 , 50(6) : 323 -331 . DOI: 10.13995/j.cnki.11-1802/ts.035764

Abstract

Aflatoxins are a class of fungal toxins known for their high toxicity and carcinogenic properties, and they are recognized as the most stable mycotoxins in terms of their physical and chemical characteristics.Contamination of aflatoxins in agricultural and animal-derived food products is a severe problem, highlighting the need for the development of rapid and accurate detection methods to safeguard human and animal health.Aptamers, as a novel class of recognition molecules, play a crucial role in the construction of biosensors for food analysis and detection.They possess advantages such as ease of synthesis, modification, high stability, and strong affinity, making them well-suited for these applications.Aptasensors refer to the conversion of the specific recognition process between aptamers and target analytes into detectable physicochemical signals, enabling rapid and precise detection of the target substances.This research content provides an overview of recent advancements in aptasensors for aflatoxin detection, focusing on electrochemical methods, colorimetric assays, fluorescence techniques, Raman spectroscopy, and other approaches.The advantages and limitations of aptasensors in the detection process are discussed, and future prospects for their development are explored.This research content serves as a valuable reference for the development of novel aptasensors for aflatoxin detection.

参考文献

[1] FAN Y Y, LI J, FAN L, et al.A label-free aptasensor based on a dual-emission fluorescent strategy for aflatoxin B1 detection[J].Sensors and Actuators B:Chemical, 2021, 346:130561.
[2] XIANG X R, YE Q H, SHANG Y T, et al.Quantitative detection of aflatoxin B1 using quantum dots-based immunoassay in a recyclable gravity-driven microfluidic chip[J].Biosensors and Bioelectronics, 2021, 190:113394.
[3] SHARMA A, GOUD K, HAYAT A, et al.Recent advances in electrochemical-based sensing platforms for aflatoxins detection[J].Chemosensors, 2016, 5(1):1-15.
[4] MUHARREMI H, RAKA L, SPAHIU J, et al.Investigation of aflatoxin M1 in baby milk and aflatoxin B1 in infant cereals marketed in Kosovo[J].Journal of Food Processing and Preservation, 2022, 46(6):1-15.
[5] YAN C L, WANG Q L, YANG Q, et al.Recent advances in aflatoxins detection based on nanomaterials[J].Nanomaterials (Basel), 2020, 10(9):1626.
[6] FORCADA S, SáNCHEZ-VISEDO A, MELENDRERAS C, et al.Design and evaluation of a competitive phosphorescent Immunosensor for aflatoxin M1 quantification in milk samples using Mn:ZnS quantum dots as antibody tags[J].Chemosensors, 2022, 10(2):41.
[7] LI M, WANG H M, SUN J D, et al.Rapid, on-site, and sensitive detection of aflatoxin M1 in milk products by using time-resolved fluorescence microsphere test strip[J].Food Control, 2021, 121:107616.
[8] DANESH N M, BOSTAN H B, ABNOUS K, et al.Ultrasensitive detection of aflatoxin B1 and its major metabolite aflatoxin M1 using aptasensors:A review[J].TrAC Trends in Analytical Chemistry, 2018, 99:117-128.
[9] DAI H R, LIANG S H, SHAN D D, et al.Efficient and simple simultaneous adsorption removal of multiple aflatoxins from various liquid foods[J].Food Chemistry, 2022, 380:132176.
[10] JIA B Y, LIAO X F, SUN C N, et al.Development of a quantum dot nanobead-based fluorescent strip immunosensor for on-site detection of aflatoxin B1 in lotus seeds[J].Food Chemistry, 2021, 356:129614.
[11] ZARESHAHRABADI Z, BAHMYARI R, NOURAEI H, et al.Detection of aflatoxin and ochratoxin A in spices by high-performance liquid chromatography[J].Journal of Food Quality, 2020, 2020:8858889.
[12] ZHANG B, YU L T, LIU Z J, et al.Rapid determination of aflatoxin B1 by an automated immunomagnetic bead purification sample pretreatment method combined with high-performance liquid chromatography[J].Journal of Separation Science, 2020, 43(17):3509-3519.
[13] PANARA A, KATSA M, KOSTAKIS M, et al.Monitoring of aflatoxin M1 in various origins greek milk samples using liquid chromatography tandem mass spectrometry[J].Separations, 2022, 9(3):58.
[14] SERGEYEVA T, YARYNKA D, PILETSKA E, et al.Development of a smartphone-based biomimetic sensor for aflatoxin B1 detection using molecularly imprinted polymer membranes[J].Talanta, 2019, 201:204-210.
[15] WU Y X, YU J Z, LI F, et al.A calibration curve implanted enzyme-linked immunosorbent assay for simultaneously quantitative determination of multiplex mycotoxins in cereal samples, soybean and peanut[J].Toxins (Basel), 2020, 12(11):718.
[16] WANG Q, LI S J, ZHANG Y, et al.A highly sensitive photothermal immunochromatographic sensor for detection of aflatoxin B1 based on Cu2-xSe-Au nanoparticles[J].Food Chemistry, 2023, 401:134065.
[17] BOZOKALFA G, AKBULUT H, DEMIR B, et al.Polypeptide functional surface for the aptamer immobilization:Electrochemical cocaine biosensing[J].Analytical Chemistry, 2016, 88(7):4161-4167.
[18] SINGH H, SINGH S, BHARDWAJ S.K, et al.Development of carbon quantum dot-based lateral flow immunoassay for sensitive detection of aflatoxin M1 in milk[J].Food Chemistry, 2022, 393:133374.
[19] HAMAMI M, MARS A, RAOUAFI N.Biosensor based on antifouling PEG/Gold nanoparticles composite for sensitive detection of aflatoxin M1 in milk[J].Microchemical Journal, 2021, 165:106102.
[20] MAVRIKOU S, FLAMPOURI E, ICONOMOU D, et al.Development of a cellular biosensor for the detection of aflatoxin B1, based on the interaction of membrane engineered Vero cells with anti-AFB1 antibodies on the surface of gold nanoparticle screen printed electrodes[J].Food Control, 2017, 73:64-70.
[21] ZHENG S, WANG C G, LI J X, et al.Graphene oxide-based three-dimensional Au nanofilm with high-density and controllable hotspots:A powerful film-type SERS tag for immunochromatographic analysis of multiple mycotoxins in complex samples[J].Chemical Engineering Journal, 2022, 448:137760.
[22] CUI K L, LI G H, WANG L Y, et al.An on/off aptasensor for detection of AFB1 based on pH-sensitive polymer and GO composite[J].Journal of The Electrochemical Society, 2020, 167(2):027508.
[23] ROUSHANI M, FAROKHI S, RAHMATI Z.Development of a dual-recognition strategy for the aflatoxin B1 detection based on a hybrid of aptamer-MIP using a Cu2O NCs/GCE[J].Microchemical Journal, 2022, 178:107328.
[24] LI Y Y, LIU D, ZHU C X, et al.Sensitivity programmable ratiometric electrochemical aptasensor based on signal engineering for the detection of aflatoxin B1 in peanut[J].Journal of Hazardous Materials, 2020, 387:122001.
[25] WANG C, ZHAO Q.A reagentless electrochemical sensor for aflatoxin B1 with sensitive signal-on responses using aptamer with methylene blue label at specific internal thymine[J].Biosensors and Bioelectronics, 2020, 167:112478.
[26] JIA F, LIU D, DONG N, et al.Interaction between the functionalized probes:The depressed efficiency of dual-amplification strategy on ratiometric electrochemical aptasensor for aflatoxin B1[J].Biosensors and Bioelectronics, 2021, 182:113169.
[27] CUI H N, AN K Q, WANG C Q, et al.A disposable ratiometric electrochemical aptasensor with exonuclease I-powered target recycling amplification for highly sensitive detection of aflatoxin B1[J].Sensors and Actuators B:Chemical, 2022, 355:311238.
[28] JALALIAN S H, RAMEZANI M, DANESH N M, et al.A novel electrochemical aptasensor for detection of aflatoxin M1 based on target-induced immobilization of gold nanoparticles on the surface of electrode[J].Biosensors and Bioelectronics, 2018, 117:487-492.
[29] RAHMANI H R, ADABI M, BAGHERI K P, et al.Development of electrochemical aptasensor based on gold nanoparticles and electrospun carbon nanofibers for the detection of aflatoxin M1 in milk[J].Journal of Food Measurement and Characterization, 2021, 15(2):1826-1833.
[30] KORDASHT H K, HASANZADEH M.Specific monitoring of aflatoxin M1 in real samples using aptamer binding to DNFS based on turn-on method:A novel biosensor[J].Journal of Molecular Recognition, 2020, 33(6):e2832.
[31] KHOLAFAZAD KORDASHT H, MOOSAVY M H, HASANZADEH M, et al.Correction:Determination of aflatoxin M1 using an aptamer-based biosensor immobilized on the surface of dendritic fibrous nano-silica functionalized by amine groups[J].Analytical Methods, 2022, 14(12):1291.
[32] YANG T, LUO Z W, TIAN Y H, et al.Design strategies of AuNPs-based nucleic acid colorimetric biosensors[J].Trends in Analytical Chemistry, 2020, 124:115795.
[33] JIANG Y, SHI M, LIU Y, et al.Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins[J].Angewandte Chemie International Edition, 2017, 56(39):11916-11920.
[34] SHEN Z, XU D Y, WANG G X, et al.Novel colorimetric aptasensor based on MOF-derived materials and its applications for organophosphorus pesticides determination[J].Journal of Hazardous Materials, 2022, 440:129707.
[35] CHANG D R, ZAKARIA S, DENG M M, et al.Integrating deoxyribozymes into colorimetric sensing platforms[J].Sensors (Basel), 2016, 16(12):2061.
[36] LIU R B, ZHANG F Y, SANG Y X, et al.Selection and characterization of DNA aptamers for constructing aptamer-AuNPs colorimetric method for detection of AFM1[J].Foods, 2022, 11(12):1802.
[37] KASOJU A, SHRIKRISHNA N S, SHAHDEO D, et al.Microfluidic paper device for rapid detection of aflatoxin B1 using an aptamer based colorimetric assay[J].RSC Advances, 2020, 10(20):11843-11850.
[38] JALALIAN S H, LAVAEE P, RAMEZANI M, et al.An optical aptasensor for aflatoxin M1 detection based on target-induced protection of gold nanoparticles against salt-induced aggregation and silica nanoparticles[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2021, 246:119062.
[39] LERDSRI J, THUNKHAMRAK C, JAKMUNEE J.Development of a colorimetric aptasensor for aflatoxin B1 detection based on silver nanoparticle aggregation induced by positively charged perylene diimide[J].Food Control, 2021, 130:108323.
[40] WU W L, XIA S, ZHAO M, et al.Colorimetric liquid crystal-based assay for the ultrasensitive detection of AFB1 assisted with rolling circle amplification[J].Analytica Chimica Acta, 2022, 1220:340065.
[41] SEOK Y, BYUN J Y, SHIM W B, et al.A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme[J].Analytica Chimica Acta, 2015, 886:182-187.
[42] QIAN J, REN C C, WANG C Q, et al.Gold nanoparticles mediated designing of versatile aptasensor for colorimetric/electrochemical dual-channel detection of aflatoxin B1[J].Biosensors and Bioelectronics, 2020, 166:112443.
[43] YU Y X, LI G L.Design of terbium (III)-functionalized covalent organic framework as a selective and sensitive turn-on fluorescent switch for ochratoxin A monitoring[J].Journal of Hazardous Materials, 2022, 422:126927.
[44] NGUYEN T B, VU T B, PHAM H M, et al.Detection of aflatoxins B1 in maize grains using fluorescence resonance energy transfer[J].Applied Sciences, 2020, 10(5):1578.
[45] PAN L M, ZHAO X, WEI X, et al.Ratiometric luminescence aptasensor based on dual-emissive persistent luminescent nanoparticles for autofluorescence- and exogenous interference-free determination of trace aflatoxin B1 in food samples[J].Analytical Chemistry, 2022, 94(16):6387-6393.
[46] REN W J, PANG J R, MA R R, et al.A signal on-off fluorescence sensor based on the self-assembly DNA tetrahedron for simultaneous detection of ochratoxin A and aflatoxin B1[J].Analytica Chimica Acta, 2022, 1198:339566.
[47] XIONG J C, HE S, ZHANG S, et al.A label-free aptasensor for dual-mode detection of aflatoxin B1 based on inner filter effect using silver nanoparticles and arginine-modified gold nanoclusters[J].Food Control, 2023, 144:109397.
[48] 姚惠文, 王馨悦, 雷欣莹.基于金属有机框架的荧光适配体传感器检测红酒中黄曲霉毒素B1[J].现代食品科技, 2023, 36(9):306-312.
YAO H W, WANG X Y, LEI X Y.A metal organic framework-based fluorescent aptasensor for determination of aflatoxin B1 in red wine[J].Modern Food Science and Technology, 2023, 36(9):306-312.
[49] ZHAO Z F, YANG H, DENG S, et al.Intrinsic conformation response-leveraged aptamer probe based on aggregation-induced emission dyes for aflatoxin B1 detection[J].Dyes and Pigments, 2019, 171:107767.
[50] WU Z H, PU H B, SUN D W.Fingerprinting and tagging detection of mycotoxins in agri-food products by surface-enhanced Raman spectroscopy:Principles and recent applications[J].Trends in Food Science & Technology, 2021, 110:393-404.
[51] 胡奕津, 范申, 黄丽珊, 等.光学适配体传感器检测赭曲霉毒素A的研究进展[J].化学通报, 2022, 85(10):9.
HU Y J, FAN S, HUANG L S, et al.Research progress in optical aptamer sensors for the detection of ochratoxin A[J].Chemistry.2022, 85(10):9.
[52] CHEN P F, LI C B, MA X Y, et al.A surface-enhanced Raman scattering aptasensor for ratiometric detection of aflatoxin B1 based on graphene oxide-Au@Ag core-shell nanoparticles complex[J].Food Control, 2022, 134:108748.
[53] HE H R, SUN D W, PU H B, et al.Bridging Fe3O4 @Au nanoflowers and Au@Ag nanospheres with aptamer for ultrasensitive SERS detection of aflatoxin B1[J].Food Chemistry, 2020, 324:126832.
[54] HE H Y, SUN D W, PU H B.et al.A SERS-Fluorescence dual-signal aptasensor for sensitive and robust determination of AFB1 in nut samples based on Apt-Cy5 and MNP@Ag-PEI[J].Talanta, 2023, 253:123962.
文章导航

/