为提高纳米氧化锌(zinc oxide nanoparticles,ZnONPs)的分散性和抗菌活性,该研究将绿色、无毒的A型甘露糖赤藓糖醇脂(mannosylerythritol lipids-A,MEL-A)用于ZnONPs的制备和修饰,并利用紫外可见光谱、X射线衍射、傅里叶红外光谱、纳米粒度、Zeta电位和透射电镜-能谱等方法进行表征。结果表明,MEL-A添加浓度为0.250 mmol/L时,制备出的0.250MEL-A-ZnONPs平均粒径及多分散系数(polydispersity index,PDI)值最小,分别为(78.25±27.26) nm和0.155,Zeta电位的绝对值达到最大,为-22.89 mV,且透射电镜形貌及分散性最好,显著优于未修饰的对照组(N-ZnONPs)。利用最小抑菌浓度(minimum inhibitory concentration,MIC)、最小杀菌浓度(minimum bactericidal concentration,MBC)、生长曲线、抑菌圈等实验评价ZnONPs的抗菌性能,发现N-ZnONPs和0.250MEL-A-ZnONPs对金黄色葡萄球菌的MIC均为12.0 mg/L,MBC分别为24.0 mg/L和16.0 mg/L,对大肠杆菌的MIC分别为24.0 mg/L和20.0 mg/L,MBC分别为32.0 mg/L和24.0 mg/L,表明MEL-A -ZnONPs对金黄色葡萄球菌具有更好的抗菌效果。
The green and non-toxic mannosylerythritol lipids-A (MEL-A) was used to improve the dispersibility and antibacterial activity of zinc oxide nanoparticles (ZnONPs).The characterization of the modified ZnONPs was conducted using UV-vis spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nano-particle size, Zeta potential, and transmission electron microscopy-energy spectroscopy.Results showed that the average particle size and PDI value of 0.250MEL-A-ZnONPs were the lowest, with a Zeta potential of -22.89 mV.The transmission electron microscope morphology and dispersibility of the modified ZnONPs were significantly better than the unmodified N-ZnONPs.The antibacterial property of ZnONPs was evaluated using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), growth curve, and inhibition zone tests.The MIC of N-ZnONPs and 0.250MEL-A-ZnONPs against Staphylococcus aureus were both 12.0 mg/L, while the MBC were 24.0 mg/L and 16.0 mg/L, respectively.The MIC of MEL-A-ZnONPs against Escherichia coli were 24.0 mg/L and 20.0 mg/L, and the MBC were 32.0 mg/L and 24.0 mg/L, respectively.These results demonstrate that MEL-A-ZnONPs is more effective against S.aureus than the unmodified N-ZnONPs.
[1] 李海东, 田冰, 宋杨, 等.金属氧化物纳米颗粒在食品中的应用及安全性研究[J].食品与发酵工业, 2022, 48(24):312-318.
LI H D, TIAN B, SONG Y, et al.Research on the application and safety of metal oxide nanoparticles in food[J].Food and Fermentation Industries, 2022, 48(24):312-318.
[2] 马梦婷. 绿色合成氧化锌/凹凸棒石纳米复合材料的抗菌性能及机制研究[D].兰州:兰州大学, 2022.
MA M T.Study on antibacterial properties and mechanism of green synthetic zinc oxide/attapulgite nanocomposites[D].Lanzhou:Lanzhou University, 2022.
[3] GAYATHIRI E, PRAKASH P, KARMEGAM N, et al.Biosurfactants:Potential and eco-friendly material for sustainable agriculture and environmental safety-A review[J].Agronomy, 2022, 12(3):662.
[4] BRADY N G, O′LEARY S L, MOORMANN G C, et al.Mycosynthesis of zinc oxide nanoparticles exhibits fungal species dependent morphological preference[J].Small, 2023, 19(15):2370101.
[5] MALAKAR C, PATOWARY K, DEKA S, et al.Synthesis, characterization, and evaluation of antibacterial efficacy of rhamnolipid-coated zinc oxide nanoparticles against Staphylococcus aureus[J].World Journal of Microbiology & Biotechnology, 2021, 37(11):193.
[6] KASTURE M B, PATEL P, PRABHUNE A A, et al.Synthesis of silver nanoparticles by sophorolipids:Effect of temperature and sophorolipid structure on the size of particles[J].Journal of Chemical Sciences, 2008, 120(6):515-520.
[7] 韦巧艳. 蔗糖酯—纳米ZnO的制备及其应用研究[D].南宁:广西大学, 2012.
WEI Q Y.Study on preparation and application of sucrose ester-nano-ZnO[D].Nanning:Guangxi University, 2012.
[8] KITAMOTO D, AKIBA S, HIOKI C, et al.Extracellular accumulation of mannosylerythritol lipids by a strain of Candida antarctica[J].Agricultural and Biological Chemistry, 1990, 54(1):31-36.
[9] 朱文昌, 陈坚, 华兆哲, 等.甘露赤藓糖醇脂的微生物生产[J].工业微生物, 1998, 28(1):32-37.
ZHU W C, CHEN J, HUA Z Z, et al.Microbial production of mannose erythritol[J].Industrial Microbiology, 1998, 28(1):32-37.
[10] TAKAHASHI M, MORITA T, FUKUOKA T, et al.Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H2O2-induced oxidative stress in cultured human skin fibroblasts[J].Journal of Oleo Science, 2012, 61(8):457-464.
[11] WU J N, SHU Q, NIU Y W, et al.Preparation, characterization, and antibacterial effects of chitosan nanoparticles embedded with essential oils synthesized in an ionic liquid containing system[J].Journal of Agricultural and Food Chemistry, 2018, 66(27):7006-7014.
[12] BAKUR A, NIU Y W, KUANG H, et al.Synthesis of gold nanoparticles derived from mannosylerythritol lipid and evaluation of their bioactivities[J].AMB Express, 2019, 9(1):62.
[13] 徐重新, 陈蔚, 谢雅晶, 等.食品中金黄色葡萄球菌检测及防控技术研究[J].农产品质量与安全, 2019(3):49-56.
XU C X, CHEN W, XIE Y J, et al.Detection and prevention and control technology on Staphylococcus aureus in food[J].Quality and Safety of Agro-Products, 2019(3):49-56.
[14] 牛永武. 蚜虫莫氏黑粉菌发酵产甘露糖赤藓糖醇脂的代谢调控及其群体感应机理研究[D].杭州:浙江大学, 2019.
NIU Y W.Metabolic regulation and quorum sensing mechanism of mannose erythritol produced by Myzus molitor, an aphid[D].Hangzhou:Zhejiang University, 2019.
[15] FAN L L, LI H J, NIU Y W, et al.Characterization and inducing melanoma cell apoptosis activity of mannosylerythritol lipids-A produced from Pseudozyma aphidis[J].PLoS One, 2016, 11(2):e0148198.
[16] SINGH B N, RAWAT A K S, KHAN W, et al.Biosynthesis of stable antioxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids[J].PLoS One, 2014, 9(9):e106937.
[17] BALOUIRI M, SADIKI M, IBNSOUDA S K.Methods for in vitro evaluating antimicrobial activity:A review[J].Journal of Pharmaceutical Analysis, 2016, 6(2):71-79.
[18] HITCHCOCK D J.The inhibition of bacteria by the metabolic products of trichomonads[J].The Journal of Parasitology, 1948, 34(2):114-118.
[19] ABDELSATTAR A S, KAMEL A G, HUSSEIN A H, et al.The promising antibacterial and anticancer activity of green synthesized zinc nanoparticles in combination with silver and gold nanoparticles[J].Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33(7):1868-1881.
[20] ARCINIEGAS-GRIJALBA P A, PATIÑO-PORTELA M C, MOSQUERA-SÁNCHEZ L P, et al.ZnO-based nanofungicides:Synthesis, characterization and their effect on the coffee fungi Mycena citricolor and Colletotrichum sp[J].Materials Science and Engineering:C, 2019, 98:808-825.
[21] BAKUR A, ELSHAARANI T, NIU Y W, et al.Comparative study of antidiabetic, bactericidal, and antitumor activities of MEL-AgNPs, MEL-ZnONPs, and Ag-ZnO/MEL/GA nanocomposites prepared by using MEL and gum arabic[J].RSC Advances, 2019, 9(17):9745-9754.
[22] 常建华,董绮功.波谱原理及解析 (第二版)[M].北京:科学出版社:2005:88-92.
CHANG J H, DONG Q G.Principle and Analysis of Spectrum (2nd Ed)[M].Beijing:Science Press:2005:88-92.
[23] 孙萍, 熊波, 张国青, 等.氧化锌纳米晶体的光谱分析[J].光谱学与光谱分析, 2007, 27(1):143-146.
SUN P, XIONG B, ZHANG G Q, et al.Spectral analysis of ZnO nanocrystals[J].Spectroscopy and Spectral Analysis, 2007, 27(1):143-146.
[24] DURVAL I J B, MEIRA H M, DE VERAS B O, et al.Green synthesis of silver nanoparticles using a biosurfactant from Bacillus cereus UCP 1615 as stabilizing agent and its application as an antifungal agent[J].Fermentation, 2021, 7(4):233.
[25] 廖文敏, 李坚斌, 韦巧艳, 等.蔗糖酯-纳米氧化锌的抑菌性能研究[J].食品工业, 2015, 36(10):8-11.
LIAO W M, LI J B, WEI Q Y, et al.Study on the antibacterial effect of sucrose ester-ZnO nanoparticles[J].The Food Industry, 2015, 36(10):8-11.