This study aimed to study the uric acid (UA) lowering activity of Sanghuangporus sanghuang ethanol extract in vitro, the inhibitory activity of free phenol extracts of four different sources of Sanghuangporus sanghuang (wild Phellinus vaninii, cultivated Inonotus hispidus, cultivated Phellinus vaninii, and wild Inonotus hispidus) on xanthine oxidase was determined.Furthermore, the inhibitory effect of free phenol extracts on uric acid production in high uric acid cell models.Additionally, the main compounds in strong active extract were analyzed by UPLC-MS/MS.Results suggested that cultivated Inonotus hispidus, cultivated Phellinus vaninii, and wild Inonotus hispidus showed strong inhibitory effects on xanthine oxidase (XOD), the IC50 values were (94.63±2.73) μg/mL, (99.69±2.50) μg/mL, and (106.32±5.06) μg/mL, respectively.Cultivated Inonotus hispidus and wild Phellinus vaninii showed better UA lowering ability than those of wild Inonotus hispidus and cultivated Phellinus vaninii in the high UA cell model (P<0.05).Results obtained from UPLC-MS/MS showed that the strong active components of flavonoids including hyperoside, (-)-epicatechin, theaflavin, diosmin, and cynaroside, may be the active components for lowering uric acid.This study may provide some theoretical references for the application of uric acid-lowering products of Sanghuangporus sanghuang.
[1] BECKER M A, JOLLY M.Hyperuricemia and associated diseases[J].Rheumatic Diseases Clinics of North America, 2006, 32(2):275-293.
[2] ÁLVAREZ-LARIO B, ALONSO-VALDIVIELSO J L.Hyperuricemia and gout;the role of diet[J].Nutricion Hospitalaria, 2014, 29(4):760-770.
[3] ROOS N J, DUTHALER U, BOUITBIR J, et al.The uricosuric benzbromarone disturbs the mitochondrial redox homeostasis and activates the NRF2 signaling pathway in HepG2 cells[J].Free Radical Biology and Medicine, 2020, 152:216-226.
[4] 王豪, 钱坤, 司静, 等.桑黄类真菌多糖研究进展[J].菌物学报, 2021, 40(4):895-911.
WANG H, QIAN K, SI J,et al.Research advances on polysaccharides from Sanghuang[J].Mycosystema, 2021, 40(4):895-911.
[5] HE P Y, ZHANG Y, LI N.The phytochemistry and pharmacology of medicinal fungi of the genus Phellinus:A review[J].Food and Function, 2021, 12(5):1856-1881.
[6] 李醒, 褚夫江, 蒋诗林, 等.桑黄乙醇提取物对大鼠尿酸代谢及肠道微生物影响的初步研究[J].中国中药杂志, 2021, 46(1):177-182.
LI X, CHU F J, JIANG S L, et al.Preliminary study on effect of Phellinus igniarius ethanol extract on serum uric acid metabolism and gut microbiome in rats[J].China Journal of Chinese Materia Medica, 2021, 46(1):177-182.
[7] CHENG J W, SONG J L, WANG Y B, et al.Conformation and anticancer activity of a novel mannogalactan from the fruiting bodies of Sanghuangporus sanghuang on HepG2 cells[J].Food Research International, 2022, 156:111336.
[8] PANG D R, YOU L J, ZHOU L, et al.Averrhoa carambola free phenolic extract ameliorates nonalcoholic hepatic steatosis by modulating mircoRNA-34a, mircoRNA-33 and AMPK pathways in leptin receptor-deficient db/db mice[J].Food and Function, 2017, 8(12):4496-4507.
[9] SÁNCHEZ-HERNÁNDEZ S, ESTEBAN-MUÑOZ A, SAMANIEGO-SÁNCHEZ C, et al.Study of the phenolic compound profile and antioxidant activity of human milk from Spanish women at different stages of lactation:A comparison with infant formulas[J].Food Research International, 2021, 141:110149.
[10] 王蕙. 银杏黄酮类化合物的提取及免疫功能的研究[D].大连:大连工业大学, 2009.
WANG H.Studies on the immune function and extraction of flavones from ginkgo lcaves[D].Dalian:Dalian Polytechnic University, 2009.
[11] 张晨辉. 短管兔耳草化学成分及其对XOD的抑制活性研究[D].南昌:江西中医药大学, 2019.
ZHANG C H. Chemical constituents of lagotis brevituba maxim and their inhibitory effects on XOD[D].Nanchang:Jiangxi University of Traditional Chinese Medicine, 2019.
[12] TANG J, DIAO P, SHU X H, et al.Quercetin and quercitrin attenuates the inflammatory response and oxidative stress in LPS-induced RAW264.7 cells:In vitro assessment and a theoretical model[J].BioMed Research International, 2019, 2019:7039802.
[13] WANG M, CHEN D Q, CHEN L, et al.Novel inhibitors of the cellular renin-angiotensin system components, poricoic acids, target Smad3 phosphorylation and Wnt/β-catenin pathway against renal fibrosis[J].British Journal of Pharmacology, 2018, 175(13):2689-2708.
[14] HOU C L, LIU D, WANG M, et al.Novel xanthine oxidase-based cell model using HK-2 cell for screening antihyperuricemic functional compounds[J].Free Radical Biology and Medicine, 2019, 136:135-145.
[15] DI PAOLA-NARANJO R D, SÁNCHEZ-SÁNCHEZ J, GONZÁLEZ-PARAMÁS A M, et al.Liquid chromatographic-mass spectrometric analysis of anthocyanin composition of dark blue bee pollen from Echium plantagineum[J].Journal of Chromatography A, 2004, 1054(1-2):205-210.
[16] ACEVEDO DE LA CRUZ A, HILBERT G, RIVIÉRE C, et al.Anthocyanin identification and composition of wild Vitis spp.accessions by using LC-MS and LC-NMR[J].Analytica Chimica Acta, 2012, 732:145-152.
[17] DE FERRARS R M, CZANK C, SAHA S, et al.Methods for isolating, identifying, and quantifying anthocyanin metabolites in clinical samples[J].Analytical Chemistry, 2014, 86(20):10052-10058.
[18] GLIOZZI M, MALARA N, S.MUSCOLIS, et al.The treatment of hyperuricemia[J].International Journal of Cardiology, 2016, 213:23-27.
[19] FATHALLAH-SHAYKH S A, CRAMER M T.Uric acid and the kidney[J].Pediatric Nephrology, 2014, 29(6):999-1 008.
[20] YUAN L Y, BAO Z J, MA T C, et al.Hypouricemia effects of corn silk flavonoids in a mouse model of potassium oxonated-induced hyperuricemia[J].Journal of Food Biochemistry, 2021:e13856.
[21] 王敏, 徐国辉, 赵一灵, 等.金丝桃苷对黄嘌呤氧化酶的抑制作用及分子机理[J].食品工业科技, 2022, 43(12):92-99.
WANG M, XU G H, ZHAO Y L, et al.Inhibition effect and molecular mechanism of hypericin on xanthine oxidase[J].Science and Technology of Food Industry, 2022, 43(12):92-99.
[22] WU Z Y, ZHANG H, LI F, et al.Evaluation of xanthine oxidase inhibitory activity of flavonoids by an online capillary electrophoresis-based immobilized enzyme microreactor[J].Electrophoresis, 2020, 41(15):1326-1332.
[23] PELUSO I, SERAFINI M.Antioxidants from black and green tea:From dietary modulation of oxidative stress to pharmacological mechanisms[J].British Journal of Pharmacology, 2017, 174(11):1195-1208.
[24] 周启蒙, 赵晓悦, 王海港, 等.茶黄素降低高尿酸血症小鼠血清尿酸的作用与机制探究[J].中国新药杂志, 2018, 27 (14):1631-1638.
ZHOU Q M, ZHAO X Y, WANG H G, et al.Mechanism and uric acid reducing effects of theaflavin on potassium oxonate-induced hyperuricemia in mice[J].Chinese Journal of New Drugs, 2018, 27(14):1631-1638.
[25] 刘永杰. 黄芩苷抗高尿酸血症肾病的作用及机制研究[D].武汉:武汉轻工大学, 2020.
LIU Y J.Study on the effect and mechanism of baicalin against hyperuricemia nephropathy[D].Wuhan:Wuhan Polytechnic University, 2020.
[26] 闫家凯. 木犀草素对黄嘌呤氧化酶、α-葡萄糖苷酶抑制机理的探讨[D].南昌:南昌大学, 2014.
YAN J K.Study on the inhibition mechanism of luteolion on xanthine oxidase and α-glucesidase[D].Nanchang:Nanchang University, 2014.
[27] SONG H P, ZHANG H, FU Y, et al.Screening for selective inhibitors of xanthine oxidase from Flos Chrysanthemum using ultrafiltration LC-MS combined with enzyme channel blocking[J].Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences,2014, 961:56-61.
[28] LIN Y, LIU P G, LIANG W Q, et al.Luteolin-4′-O-glucoside and its aglycone, two major flavones of Gnaphalium affine D.Don, resist hyperuricemia and acute gouty arthritis activity in animal models[J].Phytomedicine, 2018, 41:54-61.
[29] PRABHU V V, SATHYAMURTHY D, RAMASAMY A, et al.Evaluation of protective effects of diosmin (a citrus flavonoid) in chemical-induced urolithiasis in experimental rats[J].Pharmaceutical Biology, 2016, 54(9):1513-1521.