研究报告

桑黄游离酚提取物体外降尿酸活性研究

  • 赵克芳 ,
  • 肖阳 ,
  • 邢东旭 ,
  • 黎尔纳 ,
  • 杨琼 ,
  • 邹宇晓 ,
  • 庞道睿 ,
  • 廖森泰
展开
  • 1(广东海洋大学 食品科技学院,广东 湛江,524088)
    2(广东省农业科学院 蚕业与农产品加工研究所/农业农村部功能食品重点实验室/广东省农产品加工重点实验室,广东 广州,510610)
第一作者:硕士研究生(庞道睿助理研究员和廖森泰研究员为共同通信作者,E-mail:daorui66@163.com;liaost@163.com)

收稿日期: 2023-01-11

  修回日期: 2023-05-06

  网络出版日期: 2024-06-11

基金资助

广东省重点领域研发计划项目(2020B020225005);广东省农业科学院新兴学科团队建设项目(202119TD);财政部和农业农村部国家现代农业产业技术体系;2022年度高水平广东省农业科技示范市建设项目;广东省农业科学院地方分院建设项目(2022支撑01)

Study on uric acid-lowering activity of Sanghuangporus sanghuang

  • ZHAO Kefang ,
  • XIAO Yang ,
  • XING Dongxu ,
  • LI Erna ,
  • YANG Qiong ,
  • ZOU Yuxiao ,
  • PANG Daorui ,
  • LIAO Sentai
Expand
  • 1(College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China)
    2(Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Food, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing/Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510610, China)

Received date: 2023-01-11

  Revised date: 2023-05-06

  Online published: 2024-06-11

摘要

为研究桑黄游离酚提取物体外降尿酸活性,以野生瓦宁木层孔菌、栽培粗毛纤孔菌、栽培瓦宁木层孔菌和野生粗毛纤孔菌4个不同来源的桑黄为研究对象,分析不同来源桑黄游离酚提取物对黄嘌呤氧化酶的抑制活性,及其在高尿酸细胞模型中的降尿酸作用。筛选出降尿酸活性强的桑黄游离酚提取物,并通过超高效液相色谱-串联质谱(ultra performance liquid chromatography/tandem mass spectrometry,UPLC-MS/MS)对其降尿酸活性物质进行分析。研究结果表明,栽培粗毛纤孔菌、栽培瓦宁木层孔菌和野生粗毛纤孔菌的游离酚提取物对黄嘌呤氧化酶具有显著的抑制作用(P<0.05),IC50值分别为(94.63±2.73) μg/mL、(99.69±2.50) μg/mL和(106.32±5.06) μg/mL;栽培粗毛纤孔菌和野生瓦宁木层孔菌的游离酚提取物可显著抑制高尿酸细胞模型中尿酸生成(P<0.05)。进一步通过UPLC-MS/MS分析活性较强的栽培粗毛纤孔菌游离酚中主要成分发现,其黄酮类物质中金丝桃苷、表儿茶素、茶黄素、地奥司明及木犀草苷等,可能是其降尿酸的主要活性物质。该研究可为桑黄降尿酸产品的研究与开发提供部分理论参考。

本文引用格式

赵克芳 , 肖阳 , 邢东旭 , 黎尔纳 , 杨琼 , 邹宇晓 , 庞道睿 , 廖森泰 . 桑黄游离酚提取物体外降尿酸活性研究[J]. 食品与发酵工业, 2024 , 50(10) : 119 -126 . DOI: 10.13995/j.cnki.11-1802/ts.034869

Abstract

This study aimed to study the uric acid (UA) lowering activity of Sanghuangporus sanghuang ethanol extract in vitro, the inhibitory activity of free phenol extracts of four different sources of Sanghuangporus sanghuang (wild Phellinus vaninii, cultivated Inonotus hispidus, cultivated Phellinus vaninii, and wild Inonotus hispidus) on xanthine oxidase was determined.Furthermore, the inhibitory effect of free phenol extracts on uric acid production in high uric acid cell models.Additionally, the main compounds in strong active extract were analyzed by UPLC-MS/MS.Results suggested that cultivated Inonotus hispidus, cultivated Phellinus vaninii, and wild Inonotus hispidus showed strong inhibitory effects on xanthine oxidase (XOD), the IC50 values were (94.63±2.73) μg/mL, (99.69±2.50) μg/mL, and (106.32±5.06) μg/mL, respectively.Cultivated Inonotus hispidus and wild Phellinus vaninii showed better UA lowering ability than those of wild Inonotus hispidus and cultivated Phellinus vaninii in the high UA cell model (P<0.05).Results obtained from UPLC-MS/MS showed that the strong active components of flavonoids including hyperoside, (-)-epicatechin, theaflavin, diosmin, and cynaroside, may be the active components for lowering uric acid.This study may provide some theoretical references for the application of uric acid-lowering products of Sanghuangporus sanghuang.

参考文献

[1] BECKER M A, JOLLY M.Hyperuricemia and associated diseases[J].Rheumatic Diseases Clinics of North America, 2006, 32(2):275-293.
[2] ÁLVAREZ-LARIO B, ALONSO-VALDIVIELSO J L.Hyperuricemia and gout;the role of diet[J].Nutricion Hospitalaria, 2014, 29(4):760-770.
[3] ROOS N J, DUTHALER U, BOUITBIR J, et al.The uricosuric benzbromarone disturbs the mitochondrial redox homeostasis and activates the NRF2 signaling pathway in HepG2 cells[J].Free Radical Biology and Medicine, 2020, 152:216-226.
[4] 王豪, 钱坤, 司静, 等.桑黄类真菌多糖研究进展[J].菌物学报, 2021, 40(4):895-911.
WANG H, QIAN K, SI J,et al.Research advances on polysaccharides from Sanghuang[J].Mycosystema, 2021, 40(4):895-911.
[5] HE P Y, ZHANG Y, LI N.The phytochemistry and pharmacology of medicinal fungi of the genus Phellinus:A review[J].Food and Function, 2021, 12(5):1856-1881.
[6] 李醒, 褚夫江, 蒋诗林, 等.桑黄乙醇提取物对大鼠尿酸代谢及肠道微生物影响的初步研究[J].中国中药杂志, 2021, 46(1):177-182.
LI X, CHU F J, JIANG S L, et al.Preliminary study on effect of Phellinus igniarius ethanol extract on serum uric acid metabolism and gut microbiome in rats[J].China Journal of Chinese Materia Medica, 2021, 46(1):177-182.
[7] CHENG J W, SONG J L, WANG Y B, et al.Conformation and anticancer activity of a novel mannogalactan from the fruiting bodies of Sanghuangporus sanghuang on HepG2 cells[J].Food Research International, 2022, 156:111336.
[8] PANG D R, YOU L J, ZHOU L, et al.Averrhoa carambola free phenolic extract ameliorates nonalcoholic hepatic steatosis by modulating mircoRNA-34a, mircoRNA-33 and AMPK pathways in leptin receptor-deficient db/db mice[J].Food and Function, 2017, 8(12):4496-4507.
[9] SÁNCHEZ-HERNÁNDEZ S, ESTEBAN-MUÑOZ A, SAMANIEGO-SÁNCHEZ C, et al.Study of the phenolic compound profile and antioxidant activity of human milk from Spanish women at different stages of lactation:A comparison with infant formulas[J].Food Research International, 2021, 141:110149.
[10] 王蕙. 银杏黄酮类化合物的提取及免疫功能的研究[D].大连:大连工业大学, 2009.
WANG H.Studies on the immune function and extraction of flavones from ginkgo lcaves[D].Dalian:Dalian Polytechnic University, 2009.
[11] 张晨辉. 短管兔耳草化学成分及其对XOD的抑制活性研究[D].南昌:江西中医药大学, 2019.
ZHANG C H. Chemical constituents of lagotis brevituba maxim and their inhibitory effects on XOD[D].Nanchang:Jiangxi University of Traditional Chinese Medicine, 2019.
[12] TANG J, DIAO P, SHU X H, et al.Quercetin and quercitrin attenuates the inflammatory response and oxidative stress in LPS-induced RAW264.7 cells:In vitro assessment and a theoretical model[J].BioMed Research International, 2019, 2019:7039802.
[13] WANG M, CHEN D Q, CHEN L, et al.Novel inhibitors of the cellular renin-angiotensin system components, poricoic acids, target Smad3 phosphorylation and Wnt/β-catenin pathway against renal fibrosis[J].British Journal of Pharmacology, 2018, 175(13):2689-2708.
[14] HOU C L, LIU D, WANG M, et al.Novel xanthine oxidase-based cell model using HK-2 cell for screening antihyperuricemic functional compounds[J].Free Radical Biology and Medicine, 2019, 136:135-145.
[15] DI PAOLA-NARANJO R D, SÁNCHEZ-SÁNCHEZ J, GONZÁLEZ-PARAMÁS A M, et al.Liquid chromatographic-mass spectrometric analysis of anthocyanin composition of dark blue bee pollen from Echium plantagineum[J].Journal of Chromatography A, 2004, 1054(1-2):205-210.
[16] ACEVEDO DE LA CRUZ A, HILBERT G, RIVIÉRE C, et al.Anthocyanin identification and composition of wild Vitis spp.accessions by using LC-MS and LC-NMR[J].Analytica Chimica Acta, 2012, 732:145-152.
[17] DE FERRARS R M, CZANK C, SAHA S, et al.Methods for isolating, identifying, and quantifying anthocyanin metabolites in clinical samples[J].Analytical Chemistry, 2014, 86(20):10052-10058.
[18] GLIOZZI M, MALARA N, S.MUSCOLIS, et al.The treatment of hyperuricemia[J].International Journal of Cardiology, 2016, 213:23-27.
[19] FATHALLAH-SHAYKH S A, CRAMER M T.Uric acid and the kidney[J].Pediatric Nephrology, 2014, 29(6):999-1 008.
[20] YUAN L Y, BAO Z J, MA T C, et al.Hypouricemia effects of corn silk flavonoids in a mouse model of potassium oxonated-induced hyperuricemia[J].Journal of Food Biochemistry, 2021:e13856.
[21] 王敏, 徐国辉, 赵一灵, 等.金丝桃苷对黄嘌呤氧化酶的抑制作用及分子机理[J].食品工业科技, 2022, 43(12):92-99.
WANG M, XU G H, ZHAO Y L, et al.Inhibition effect and molecular mechanism of hypericin on xanthine oxidase[J].Science and Technology of Food Industry, 2022, 43(12):92-99.
[22] WU Z Y, ZHANG H, LI F, et al.Evaluation of xanthine oxidase inhibitory activity of flavonoids by an online capillary electrophoresis-based immobilized enzyme microreactor[J].Electrophoresis, 2020, 41(15):1326-1332.
[23] PELUSO I, SERAFINI M.Antioxidants from black and green tea:From dietary modulation of oxidative stress to pharmacological mechanisms[J].British Journal of Pharmacology, 2017, 174(11):1195-1208.
[24] 周启蒙, 赵晓悦, 王海港, 等.茶黄素降低高尿酸血症小鼠血清尿酸的作用与机制探究[J].中国新药杂志, 2018, 27 (14):1631-1638.
ZHOU Q M, ZHAO X Y, WANG H G, et al.Mechanism and uric acid reducing effects of theaflavin on potassium oxonate-induced hyperuricemia in mice[J].Chinese Journal of New Drugs, 2018, 27(14):1631-1638.
[25] 刘永杰. 黄芩苷抗高尿酸血症肾病的作用及机制研究[D].武汉:武汉轻工大学, 2020.
LIU Y J.Study on the effect and mechanism of baicalin against hyperuricemia nephropathy[D].Wuhan:Wuhan Polytechnic University, 2020.
[26] 闫家凯. 木犀草素对黄嘌呤氧化酶、α-葡萄糖苷酶抑制机理的探讨[D].南昌:南昌大学, 2014.
YAN J K.Study on the inhibition mechanism of luteolion on xanthine oxidase and α-glucesidase[D].Nanchang:Nanchang University, 2014.
[27] SONG H P, ZHANG H, FU Y, et al.Screening for selective inhibitors of xanthine oxidase from Flos Chrysanthemum using ultrafiltration LC-MS combined with enzyme channel blocking[J].Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences,2014, 961:56-61.
[28] LIN Y, LIU P G, LIANG W Q, et al.Luteolin-4′-O-glucoside and its aglycone, two major flavones of Gnaphalium affine D.Don, resist hyperuricemia and acute gouty arthritis activity in animal models[J].Phytomedicine, 2018, 41:54-61.
[29] PRABHU V V, SATHYAMURTHY D, RAMASAMY A, et al.Evaluation of protective effects of diosmin (a citrus flavonoid) in chemical-induced urolithiasis in experimental rats[J].Pharmaceutical Biology, 2016, 54(9):1513-1521.
文章导航

/