研究报告

青钱柳发酵物对2型糖尿病合并肝损伤大鼠糖脂代谢及肠道菌群的调节作用

  • 刘恭孝 ,
  • 谢磊 ,
  • 甄学静 ,
  • 寇静 ,
  • 张任强 ,
  • 周书伊 ,
  • 田雨露
展开
  • (陕西中医药大学 医学技术学院,陕西 咸阳,712000)
第一作者:本科生(寇静实验师为通信作者,E-mail:78276628@qq.com)

收稿日期: 2024-01-03

  修回日期: 2024-03-07

  网络出版日期: 2024-07-11

基金资助

陕西省科技厅自然基础研究计划项目(2021JQ-743)

Exploration of Cyclocarya paliurus fermentation on glucolipid metabolism and intestinal microflora in type 2 diabetes mellitus rats combined with liver injury

  • LIU Gongxiao ,
  • XIE Lei ,
  • ZHEN Xuejing ,
  • KOU Jing ,
  • ZHANG Renqiang ,
  • ZHOU Shuyi ,
  • TIAN Yulu
Expand
  • (School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang 712000, China)

Received date: 2024-01-03

  Revised date: 2024-03-07

  Online published: 2024-07-11

摘要

为探究发酵青钱柳防治2型糖尿病(type 2 diabetes mellitus,T2DM)合并肝损伤的作用机制,该实验用冠突散囊菌对青钱柳进行接种发酵,并以高脂高糖饲料持续喂养加链脲佐菌素注射的方式建立T2DM合并肝损伤大鼠模型,设置了正常组、模型组以及不同剂量组,并采用降糖药物二甲双胍作为阳性对照组,对比青钱柳发酵物在防治糖尿病合并肝损伤的效果。结果表明,青钱柳发酵物能显著降低T2DM合并肝损伤大鼠的空腹血糖和改善葡萄糖耐受,并能显著降低血清中总胆固醇、甘油三酯、低密度脂蛋白胆固醇、谷丙转氨酶及谷草转氨酶水平,缓解模型大鼠的肝脏损伤。同时研究发现,高剂量组能显著提高大鼠肠道菌群的多样性,上调厚壁菌门/拟杆菌门比值,维持肠道中菌群结构稳定;增加肠道中乳酸菌Lactobacillus等益生菌的丰度,降低Escherichia-Shigella等致炎微生物的丰度。综上所述,青钱柳发酵物能有效改善T2DM合并肝损伤大鼠的糖脂代谢,促使肠道中有益菌的增生,缓解肠道微生物菌群失衡,巩固肠道的防御功能。

本文引用格式

刘恭孝 , 谢磊 , 甄学静 , 寇静 , 张任强 , 周书伊 , 田雨露 . 青钱柳发酵物对2型糖尿病合并肝损伤大鼠糖脂代谢及肠道菌群的调节作用[J]. 食品与发酵工业, 2024 , 50(12) : 220 -226 . DOI: 10.13995/j.cnki.11-1802/ts.038466

Abstract

To explore the mechanism of fermented Cyclocarya paliurus in preventing and controlling type 2 diabetes mellitus (T2DM) combined with liver injury, in this study, Cyclocarya paliurus was inoculated and fermented by Eurotium cristatum, and T2DM rats model combined with liver injury was established with high-fat and high-sugar feed and streptozotocin injection.The normal group, the model group, and the different dose groups were set up, and the hypoglycemic drug metformin was used as the positive control group, to compare the effect of Cyclocarya paliurus fermentation in preventing and controlling diabetes mellitus combined with liver injury.Results showed that Cyclocarya paliurus fermentation could significantly reduce fasting blood glucose and improve glucose tolerance in rats with T2DM combined with liver injury, and also significantly reduce the serum levels of total cholesterol, triglyceride, low density lipoprotein-cholesterol, alanine aminotransferase and aspartate aminotransferase and alleviate the hepatic injury in rats with T2DM combined with liver injury.Meanwhile, it was found that the high-dose group could significantly increase the diversity of intestinal flora in rats, up-regulate Firmicutes/Bacteroidetes ratios to maintain the stability of intestinal flora structure, increase the abundance of probiotics such as Lactobacillus, and decrease the abundance of inflammatory microorganisms such as Escherichia-Shigella in the intestinal tract.In conclusion, Cyclocarya paliurus fermentation could effectively improve the glucose and lipid metabolism in rats with T2DM combined with liver injury, promote the proliferation of beneficial bacteria in the intestinal tract, alleviate the imbalance of intestinal microflora, and consolidate the defense function of the intestinal tract.

参考文献

[1] NI L P, YU D, WU T F, et al. Gender-specific association between non-alcoholic fatty liver disease and type 2 diabetes mellitus among a middle-aged and elderly Chinese population: An observational study[J]. Medicine, 2021, 100(6): e24743.
[2] 刘林杰, 李慧琼, 徐焱成. Ⅱ型糖尿病合并非酒精性脂肪肝流行状况与危险因素[J]. 公共卫生与预防医学, 2019, 30(3):40-43.
LIU L J, LI H Q, XU Y C. Study on prevalence and risk factors of type 2 diabetes mellitus complicated with nonalcoholic fatty liver disease[J]. Journal of Public Health and Preventive Medicine, 2019, 30(3):40-43.
[3] ZHAO Y Y, XING H C, WANG X M, et al. Management of diabetes mellitus in patients with chronic liver diseases[J]. Journal of Diabetes Research, 2019, 2019:6430486.
[4] NOVAKOVIC M, ROUT A, KINGSLEY T, et al. Role of gut microbiota in cardiovascular diseases[J]. World Journal of Cardiology, 2020, 12(4):110-122.
[5] 马明艳, 陈雪莲, 王淑霞, 等. 肠道微生物与肥胖关系的研究进展[J]. 中国食物与营养, 2023, 29(5):73-76; 80.
MA M Y, CHEN X L, WANG S X, et al. Research advancement on the relationship between intestinal microorganisms and obesity[J]. Food and Nutrition in China, 2023, 29(5):73-76; 80.
[6] 林子欣. 青钱柳化学成分分离、网络药理学和三萜类化合物合成通路研究[D]. 上海: 上海师范大学, 2021.
LIN Z X. Study on separation of chemical components, network pharmacology and synthetic pathways of triterpenoids from Cyclocarya paliurus[D]. Shanghai: Shanghai Normal University, 2021.
[7] 李俊, 梁晓琴, 常燕玲, 等. 青钱柳的化学成分及药理活性研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5):227-252.
LI J, LIANG X Q, CHANG Y L, et al. Review on the constituents and pharmacological activities of Cyclocarya paliurus[J]. Journal of Guangxi Normal University (Natural Science Edition), 2022, 40(5):227-252.
[8] 李燕, 蔡儒安, 潘如梨, 等. 青钱柳水提物降血糖及抗发炎功效研究[J]. 中国食品学报, 2021, 21(9):102-109.
LI Y, CAI R A,Pan R L, et al. Studies on hypoglycemic and anti-inflammatory effects of Cyclocarya paliurus extract[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(9):102-109.
[9] 徐若宸, 张鹏, 向明. 青钱柳化学成分及抗代谢性疾病药理作用研究进展[J]. 中草药, 2023, 54(9):2962-2977.
XU R C, ZHANG P, XIANG M. Research progress on chemical constituents and anti-metabolic disease pharmacological effects of Cyclocarya paliurus[J]. Chinese Traditional and Herbal Drugs, 2023, 54(9):2962-2977.
[10] 姚新伟, 赵锦金, 徐德平. 青钱柳多糖降血糖活性成分研究[J]. 食品与发酵工业, 2023, 49(13):165-171.
YAO X W, ZHAO J J, XU D P. Hypoglycemic bioactivity of polysaccharide from Cyclocarya paliurus[J]. Food and Fermentation Industries, 2023, 49(13):165-171.
[11] 寇静, 史琳娜, 马添翼. 冠突散囊菌发酵甘薯茶对高脂血症大鼠脂质代谢和肠道菌群紊乱的调节[J]. 食品与发酵工业, 2023, 49(16):231-239.
KOU J, SHI L N, MA T Y. Effect of sweet potato tea fermented by Eurotium cristatum on lipid metabolism and gut microbiota in hyperlipidemic rats[J]. Food and Fermentation Industries, 2023, 49(16):231-239.
[12] 曹维, 金杜欣, 刘瑞, 等. 食源性黄酮通过肠道菌群调节Ⅱ型糖尿病的作用机制研究进展[J]. 食品与发酵工业, 2024, 50(2):372-378.
CAO W, JIN D X, LIU R, et al. Research progress on the mechanism of food-derived flavonoids regulating type Ⅱ diabetes mellitus via gut microbiota[J]. Food and Fermentation Industries, 2024, 50(2):372-378.
[13] 巢瑾, 罗茜, 李佳莲, 等. 冠突散囊菌发酵青钱柳前后特征风味与挥发性物质的变化[J]. 食品与发酵工业, 2023, 49(9):57-64; 81.
CHAO J, LUO Q, LI J L, et al. Variation of characteristic flavor and volatile substances in Cyclocarya paliurus fermented with Eurotium cristatum[J]. Food and Fermentation Industries, 2023, 49(9):57-64; 81.
[14] 李焱, 林泳峰, 刘文美, 等. 茶多糖研究的现状与发展趋势[J]. 茶叶科学, 2023, 43(4):447-459.
LI Y, LIN Y F, LIU W M, et al. Present status and development trends of research on tea polysaccharides[J]. Journal of Tea Science, 2023, 43(4):447-459.
[15] 金海燕, 沈璐, 苏同生, 等. 茶叶及其活性成分降糖作用的研究进展[J]. 陕西农业科学, 2020, 66(8):81-84.
JIN H Y, SHEN LU,SU T S, et al. Research advance of tea and its active constituents for hypoglycemic action[J]. Shaanxi Journal of Agricultural Sciences, 2020, 66(8):81-84.
[16] 张博荀. 基于“肠道菌群—黏膜屏障” 研究“黄芩—黄连” 药对治疗T2DM的疗效机制及配伍效应[D]. 成都: 成都中医药大学, 2020.
ZHANG B X. Study on the therapeutic mechanism and compatibility effect of scutellaria-coptis herbal couple on T2DM based on the gut microbiota and the intestinal mucosal Barrier[D]. Chengdu: Chengdu University of TCM, 2020.
[17] MA Q T, LI Y Q, LI P F, et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora[J]. Biomedicine & Pharmacotherapy, 2019, 117:109138.
[18] ZHANG X, ZHAO Y F, ZHANG M H, et al. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats[J]. PLoS One, 2012, 7(8): e42529.
[19] 杨超茅, 张顺宵, 李园园, 等. 六味地黄汤加减联合氯沙坦钾对糖尿病肾病大鼠ACE1/Ang Ⅱ/AT1R轴及肠道菌群的影响[J]. 中国实验方剂学杂志, 2024, 30(6):1-9.
YANG C M, ZHANG S X, LI Y Y, et al. Modified Liuwei dihuangtang combined with losartan potassium regulates ACE1/ang Ⅱ/AT1R axis and intestinal flora in rat model of diabetic kidney disease[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2024, 30(6):1-9.
[20] 王鹏飞. 志贺菌、大肠杆菌和沙门菌CRISPR结构特征生物信息学分析[D]. 郑州: 郑州大学, 2015.
WANG P F. Bioinformatics analysis of crispr structures and Featurein shigella, Escherichia coli and Salmonella[D]. Zhengzhou: Zhengzhou University, 2015.
[21] JIAO N, BAKER S S, NUGENT C A, et al. Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: A meta-analysis[J]. Physiological Genomics, 2018, 50(4):244-254.
[22] HOU D Z, ZHAO Q Y, YOUSAF L, et al. Whole mung bean (Vigna radiata L.) supplementation prevents high-fat diet-induced obesity and disorders in a lipid profile and modulates gut microbiota in mice[J]. European Journal of Nutrition, 2020, 59(8):3617-3634.
[23] WU H G, CHEN Q, LIU J N, et al. Microbiome analysis reveals gut microbiota alteration in mice with the effect of matrine[J]. Microbial Pathogenesis, 2021, 156:104926.
[24] 崔丽军. 粪菌移植联合防风通圣丸对肥胖大鼠肠道菌群-SCFAs-GPR43-胃肠肽通路的影响[D]. 北京: 北京中医药大学, 2021.
CUI L J. Effect of fecal bacteria transplantation combined with Fangfeng Tongsheng Pill on intestinal flora-SCFAs-GPR43-gastrointestinal peptide pathway in obese rats[D]. Beijing: Beijing University of Chinese Medicine, 2021.
[25] 牟菲, 赵娟娟, 纪泽敏, 等. 基于16S rDNA高通量测序技术挖掘影响高脂血症的核心菌群[J]. 中国药物与临床, 2020, 20(5):701-704.
MU F, ZHAO J J, JI Z M, et al. 16S rDNA-based high-throughput sequencing techniques for mining of core flora affecting hyperlipidemia[J]. Chinese Remedies & Clinics, 2020, 20(5):701-704.
文章导航

/