综述与专题评论

基于转录因子的生物传感器研究进展

  • 赵梅 ,
  • 罗佳璐 ,
  • 王震 ,
  • 周海星 ,
  • 杨爽黎 ,
  • 商洁 ,
  • 齐向辉
展开
  • (江苏大学 食品与生物工程学院,江苏 镇江,212013)
第一作者:博士,讲师(齐向辉教授为通信作者,E-mail:qxh@ujs.edu.cn)

收稿日期: 2023-07-10

  修回日期: 2023-08-14

  网络出版日期: 2024-07-11

基金资助

国家自然科学基金项目(32200061,32272284);江苏省自然科学基金项目(BK20210752);中国博士后项目(2023T160278,2022M721390)

Research progress on transcription-factor-based biosensors

  • ZHAO Mei ,
  • LUO Jialu ,
  • WANG Zhen ,
  • ZHOU Haixing ,
  • YANG Shuangli ,
  • SHANG Jie ,
  • QI Xianghui
Expand
  • (School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China)

Received date: 2023-07-10

  Revised date: 2023-08-14

  Online published: 2024-07-11

摘要

转录因子的生物传感器(transcription-factor-based biosensors,TFBBs)作为一种重要的合成生物学工具,在高通量筛选、适应性进化、动态调控等方面具有重要作用。然而,天然的TFBBs由于灵敏度低、专一性差、响应慢等无法满足当前的应用需求。为应对上述挑战,该文简述了TFBBs的分类及其原理,重点介绍了TFBBs的性能调节策略,包括利用定向进化、蛋白质工程等策略优化生物传感器的灵敏度、特异性、检测范围和动态范围;总结了TFBBs在高通量筛选、适应性进化及动态调控方面的应用,讨论了TFBBs在实际应用中可能面临的机遇和挑战,并对其发展趋势进行了展望,指出了合成生物学的高速发展将促进生物传感器应用于更广泛的领域。

本文引用格式

赵梅 , 罗佳璐 , 王震 , 周海星 , 杨爽黎 , 商洁 , 齐向辉 . 基于转录因子的生物传感器研究进展[J]. 食品与发酵工业, 2024 , 50(12) : 362 -369 . DOI: 10.13995/j.cnki.11-1802/ts.036728

Abstract

Transcription-factor-based biosensors(TFBBs), as an important tool in synthetic biology, play an important role in high throughput screening, adaptive evolution, dynamic regulation, and so on. However, natural TFBBs cannot meet the current application requirements due to its low sensitivity, poor specificity, and slow response. To cope with the above challenges, this paper briefly introduces the classification and principle of TFBBs, and focuses on the performance regulation strategies of TFBBs, including the optimization of sensitivity, specificity, detection range and dynamic range of biosensors by using strategies such as directed evolution and protein engineering. The applications of TFBBs in high-throughput screening, adaptive evolution and dynamic regulation are summarized.The potential opportunities and challenges of TFBBs in practical applications are discussed, and the development trend of TFBBS is prospected.It is pointed out that the rapid development of synthetic biology will promote the application of biosensors in a wider range of fields.

参考文献

[1] 廖佳敏, 杨华, 孙鹏宇, 等.生物传感器发展研究综述[J].中国高新科技, 2022(12):118-120.
LIAO J M, YANG H, SUN P Y, et al.Review of biosensor development research[J].China High and New Technology, 2022(12):118-120.
[2] MITCHLER M M, GARCIA J M, MONTERO N E, et al.Transcription factor-based biosensors:a molecular-guided approach for natural product engineering[J].Current Opinion in Biotechnology, 2021, 69:172-181.
[3] NI C, FOX K J, PRATHER K L J.Substrate-activated expression of a biosynthetic pathway in Escherichia coli[J].Biotechnology Journal, 2022,17(3), e2000433.
[4] BEABOUT K, EHRENWORTH BREEDON A M, BLUM S M, et al.Detection of bile acids in complex matrices using a transcription factor-based biosensor[J].ACS Biomaterials Science & Engineering, 2023,9(9):5151-5162.
[5] XIAO D, HU C X, XU X Z, et al.A D,L-lactate biosensor based on allosteric transcription factor LldR and amplified luminescent proximity homogeneous assay[J].Biosensors and Bioelectronics, 2022, 211:114378.
[6] ASEMOLOYE M D, MARCHISIO M A.Synthetic metabolic transducers in Saccharomyces cerevisiae as sensors for aromatic permeant acids and bioreporters of hydrocarbon metabolism[J].Biosensors and Bioelectronics, 2023, 220.
[7] CARPENTER A C, PAULSEN I T, WILLIAMS T C.Blueprints for biosensors:Design, limitations, and applications[J].Genes, 2018, 9(8): 375.
[8] LIANG Y, LUO J, YANG C, et al.Directed evolution of the PobR allosteric transcription factor to generate a biosensor for 4-hydroxymandelic acid[J].World Journal of Microbiology and Biotechnology, 2022, 38(6):104.
[9] CHEN Y W, ZHENG H J, YANG J J, et al.Development of a synthetic transcription factor-based S-adenosylmethionine biosensor in Saccharomyces cerevisiae[J].Biotechnology Letters, 2023, 45(2):255-262.
[10] YOUNGER A K D, DALVIE N C, ROTTINGHAUS A G, et al.Engineering modular biosensors to confer metabolite-responsive regulation of transcription[J].ACS Synthetic Biology, 2017, 6 (2):311-325.
[11] LIU K, ZHANG Y S, LIU K, et al.De novo design of a transcription factor for a progesterone biosensor[J].Biosensors and Bioelectronics, 2022, 203:113897.
[12] YEOM S J, KIM M, KWON K K, et al.A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts[J].Nature Communications, 2018, 9(1):5053.
[13] ZHANG J W, BARAJAS J F, BURDU M, et al.Development of a transcription factor-based lactam biosensor[J].ACS Synthetic Biology, 2017, 6 (3):439-445.
[14] SCOTT L H, WIGGLESWORTH M J, SIEWERS V, et al.Genetically encoded whole cell biosensor for drug discovery of HIF-1 interaction inhibitors[J].ACS Synthetic Biology, 2022, 11(10):3182-3189.
[15] YANG H Q, YANG X Y, LU Y B, et al.Engineering a fumaric acid-responsive two-component biosensor for dynamic range improvement in Escherichia coli[J].Systems Microbiology and Biomanufacturing, 2022, 2(3):533-541.
[16] 丁娜娜, 周胜虎, 邓禹.基于转录因子的代谢物生物传感器的研究进展[J].生物工程学报, 2021, 37(3):911-922.
DING N N, ZHOU S H, DENG Y.Progress in transcription-factor-based metabolite biosensors[J].Chinese Journal of Biotechnology, 2021, 37(3):911-922.
[17] TSAI S T, CHENG W J, ZHANG Q X, et al.Gold-specific biosensor for monitoring wastewater using genetically engineered Cupriavidus metallidurans CH34[J].ACS Synthetic Biology, 2021, 10 (12):3576-3582.
[18] PHAM C, STOGIOS P J, SAVCHENKO A, et al.Advances in engineering and optimization of transcription factor-based biosensors for plug-and-play small molecule detection[J].Current Opinion in Biotechnology, 2022, 76:102753.
[19] HICKS M, BACHMANN T T, WANG B J.Synthetic biology enables programmable cell-based biosensors[J].Chemphyschem, 2020, 21(2):132-144.
[20] WANG B J, BARAHONA M, BUCK M.Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities[J].Nucleic Acids Research, 2015, 43(3):1955-1964.
[21] LEBOVICH M, ANDREWS L B.Surveying the genetic design space for transcription factor-based metabolite biosensors:synthetic gamma-aminobutyric acid and propionate biosensors in E.coli Nissle 1917[J].Frontiers in Bioengineering and Biotechnology, 2022, 10:938056.
[22] ZHAO N N, SONG J, ZHANG H, et al.Development of a transcription factor-based diamine biosensor in Corynebacterium glutamicum[J].ACS Synthetic Biology, 2021, 10 (11):3074-3083.
[23] NUÑEZ S, BARRA M, GARRIDO D.Developing a fluorescent inducible system for free fucose quantification in Escherichia coli[J].Biosensors, 2023,13(3):388.
[24] WU T, CHEN Z Y, GUO S Y, et al.Engineering transcription factor BmoR mutants for constructing multifunctional alcohol biosensors[J].ACS Synthetic Biology, 2022, 11(3):1251-1260.
[25] CHEN S Y, WEI W P, YIN B C, et al.Development of a highly sensitive whole-cell biosensor for arsenite detection through engineered promoter modifications[J].ACS Synthetic Biology, 2019, 8(10):2295-2302.
[26] LI C, GAO X, QI H B, et al.Substantial improvement of an epimerase for the synthesis of D-allulose by biosensor-based high-throughput microdroplet screening[J].Angewandte Chemie International Edition, 2023, 62(10):e202216721.
[27] SNOEK T, CHABERSKI E K, AMBRI F, et al.Evolution-guided engineering of small-molecule biosensors[J].Nucleic Acids Research, 2020, 48(1):e3.
[28] DE PAEPE B, MAERTENS J, VANHOLME B, et al.Chimeric LysR-type transcriptional biosensors for customizing ligand specificity profiles toward flavonoids[J].ACS Synthetic Biology, 2019, 8(2):318-331.
[29] CHENG F, TANG X L, KARDASHLIEV T.Transcription factor-based biosensors in high-throughput screening:Advances and applications[J].Biotechnology Journal, 2018, 13(7):e1700648.
[30] WILDING M, HONG N, SPENCE M, et al.Protein engineering:The potential of remote mutations[J].Biochemical Society Transactions, 2019, 47(2):701-711.
[31] HUO Y, YU H, CHEN Z.New BmoR F276A/E627 N biosensor mutant based on the transcription factor useful for screening isobutanol-producing strains:China, CN110615832-A[P].2019-12-27.
[32] CHEN Y, HO J M L, SHIS D L, et al.Tuning the dynamic range of bacterial promoters regulated by ligand-inducible transcription factors[J].Nature Communications, 2018, 9(1):64.
[33] GONG X Y, ZHANG R H, WANG J, et al.Engineering of a TrpR-based biosensor for altered dynamic range and ligand preference[J].ACS Synthetic Biology, 2022, 11(6):2175-2183.
[34] DING N N, YUAN Z Q, ZHANG X J, et al.Programmable cross-ribosome-binding sites to fine-tune the dynamic range of transcription factor-based biosensor[J].Nucleic Acids Research, 2020, 48(18):10602-10613.
[35] MORALES M A, HALPERN J M.Guide to selecting a biorecognition element for biosensors[J].Bioconjugate Chemistry, 2018, 29(10):3231-3239.
[36] LI J W, ZHANG X Y, WU H, et al.Transcription factor engineering for high-throughput strain evolution and organic acid bioproduction:A review[J].Frontiers in Bioengineering and Biotechnology, 2020, 8.
[37] MORMINO M, SIEWERS V, NYGÅRD Y.Development of an Haa1-based biosensor for acetic acid sensing in Saccharomyces cerevisiae[J].FEMS Yeast Research, 2021, 21(6):foab049.
[38] XU M J, LIU P P, CHEN J M, et al.Development of a novel biosensor-driven mutation and selection system via in situ growth of corynebacterium crenatum for the production of L-arginine[J].Frontiers in Bioengineering and Biotechnology, 2020, 8: 175.
[39] GAO J S, DU M H, ZHAO J H, et al.Design of a genetically encoded biosensor to establish a high-throughput screening platform for L-cysteine overproduction[J].Metabolic Engineering, 2022, 73:144-157.
[40] CHEN D D, XU S M, LI S L, et al.Directly evolved AlkS-based biosensor platform for monitoring and high-throughput screening of alkane production[J].ACS Synthetic Biology, 2023, 12 (3):832-841.
[41] MAHR R, GÄTGENS C, GÄTGENS J, et al.Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum[J].Metabolic Engineering, 2015, 32:184-194.
[42] SEOK J Y, HAN Y H, YANG J S, et al.Synthetic biosensor accelerates evolution by rewiring carbon metabolism toward a specific metabolite[J].Cell Reports, 2021, 36(8):109589.
[43] CHA J W, JANG S H, SON J, et al.Engineering of Klebsiella oxytoca for the production of 2,3-butanediol from high concentration of xylose[J].ACS Sustainable Chemistry & Engineering, 2021, 9 (43):14395-14404.
[44] ZHANG X M, SUN Z H, BIAN J Y, et al.Rational metabolic engineering combined with biosensor-mediated adaptive laboratory evolution for L-cysteine overproduction from glycerol in Escherichia coli[J].Fermentation-Basel, 2022, 8(7):299.
[45] RAMAN S, ROGERS J K, TAYLOR N D, et al.Evolution-guided optimization of biosynthetic pathways[J].Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50):17803-17808.
[46] ZHENG S, HOU J, ZHOU Y, et al.One-pot two-strain system based on glucaric acid biosensor for rapid screening of myo-inositol oxygenase mutations and glucaric acid production in recombinant cells[J].Metabolic Engineering, 2018, 49:212-219.
[47] HAN L C, LIU X Y, CHENG Z Z, et al.Construction and application of a high-throughput in vivo screening platform for the evolution of nitrile metabolism-related enzymes based on a desensitized repressive biosensor[J].ACS Synthetic Biology, 2022, 11(4):1577-1587.
[48] XU P, LI L Y, ZHANG F M, et al.Improving fatty acids production by engineering dynamic pathway regulation and metabolic control[J].Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(31):11299-11304.
[49] LO T M, CHNG S H, TEO W S, et al.A two-layer gene circuit for decoupling cell growth from metabolite production[J].Cell Systems, 2016, 3 (2):133-143.
[50] WU S B, XUE Y T, YANG S J, et al.Combinational quorum sensing devices for dynamic control in cross-feeding cocultivation[J].Metabolic Engineering, 2021, 67:186-197.
[51] LIU D, SICA M S, MAO J W, et al.A p-Coumaroyl-CoA biosensor for dynamic regulation of naringenin biosynthesis in Saccharomyces cerevisiae[J].ACS Synthetic Biology, 2022, 11 (10):3228-3238.
[52] ZHANG J, WANG Z G, SU T Y, et al.Tuning the binding affinity of heme-responsive biosensor for precise and dynamic pathway regulation[J].iScience, 2020, 23 (5):101067.
文章导航

/