[1] 廖佳敏, 杨华, 孙鹏宇, 等.生物传感器发展研究综述[J].中国高新科技, 2022(12):118-120.
LIAO J M, YANG H, SUN P Y, et al.Review of biosensor development research[J].China High and New Technology, 2022(12):118-120.
[2] MITCHLER M M, GARCIA J M, MONTERO N E, et al.Transcription factor-based biosensors:a molecular-guided approach for natural product engineering[J].Current Opinion in Biotechnology, 2021, 69:172-181.
[3] NI C, FOX K J, PRATHER K L J.Substrate-activated expression of a biosynthetic pathway in Escherichia coli[J].Biotechnology Journal, 2022,17(3), e2000433.
[4] BEABOUT K, EHRENWORTH BREEDON A M, BLUM S M, et al.Detection of bile acids in complex matrices using a transcription factor-based biosensor[J].ACS Biomaterials Science & Engineering, 2023,9(9):5151-5162.
[5] XIAO D, HU C X, XU X Z, et al.A D,L-lactate biosensor based on allosteric transcription factor LldR and amplified luminescent proximity homogeneous assay[J].Biosensors and Bioelectronics, 2022, 211:114378.
[6] ASEMOLOYE M D, MARCHISIO M A.Synthetic metabolic transducers in Saccharomyces cerevisiae as sensors for aromatic permeant acids and bioreporters of hydrocarbon metabolism[J].Biosensors and Bioelectronics, 2023, 220.
[7] CARPENTER A C, PAULSEN I T, WILLIAMS T C.Blueprints for biosensors:Design, limitations, and applications[J].Genes, 2018, 9(8): 375.
[8] LIANG Y, LUO J, YANG C, et al.Directed evolution of the PobR allosteric transcription factor to generate a biosensor for 4-hydroxymandelic acid[J].World Journal of Microbiology and Biotechnology, 2022, 38(6):104.
[9] CHEN Y W, ZHENG H J, YANG J J, et al.Development of a synthetic transcription factor-based S-adenosylmethionine biosensor in Saccharomyces cerevisiae[J].Biotechnology Letters, 2023, 45(2):255-262.
[10] YOUNGER A K D, DALVIE N C, ROTTINGHAUS A G, et al.Engineering modular biosensors to confer metabolite-responsive regulation of transcription[J].ACS Synthetic Biology, 2017, 6 (2):311-325.
[11] LIU K, ZHANG Y S, LIU K, et al.De novo design of a transcription factor for a progesterone biosensor[J].Biosensors and Bioelectronics, 2022, 203:113897.
[12] YEOM S J, KIM M, KWON K K, et al.A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts[J].Nature Communications, 2018, 9(1):5053.
[13] ZHANG J W, BARAJAS J F, BURDU M, et al.Development of a transcription factor-based lactam biosensor[J].ACS Synthetic Biology, 2017, 6 (3):439-445.
[14] SCOTT L H, WIGGLESWORTH M J, SIEWERS V, et al.Genetically encoded whole cell biosensor for drug discovery of HIF-1 interaction inhibitors[J].ACS Synthetic Biology, 2022, 11(10):3182-3189.
[15] YANG H Q, YANG X Y, LU Y B, et al.Engineering a fumaric acid-responsive two-component biosensor for dynamic range improvement in Escherichia coli[J].Systems Microbiology and Biomanufacturing, 2022, 2(3):533-541.
[16] 丁娜娜, 周胜虎, 邓禹.基于转录因子的代谢物生物传感器的研究进展[J].生物工程学报, 2021, 37(3):911-922.
DING N N, ZHOU S H, DENG Y.Progress in transcription-factor-based metabolite biosensors[J].Chinese Journal of Biotechnology, 2021, 37(3):911-922.
[17] TSAI S T, CHENG W J, ZHANG Q X, et al.Gold-specific biosensor for monitoring wastewater using genetically engineered Cupriavidus metallidurans CH34[J].ACS Synthetic Biology, 2021, 10 (12):3576-3582.
[18] PHAM C, STOGIOS P J, SAVCHENKO A, et al.Advances in engineering and optimization of transcription factor-based biosensors for plug-and-play small molecule detection[J].Current Opinion in Biotechnology, 2022, 76:102753.
[19] HICKS M, BACHMANN T T, WANG B J.Synthetic biology enables programmable cell-based biosensors[J].Chemphyschem, 2020, 21(2):132-144.
[20] WANG B J, BARAHONA M, BUCK M.Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities[J].Nucleic Acids Research, 2015, 43(3):1955-1964.
[21] LEBOVICH M, ANDREWS L B.Surveying the genetic design space for transcription factor-based metabolite biosensors:synthetic gamma-aminobutyric acid and propionate biosensors in E.coli Nissle 1917[J].Frontiers in Bioengineering and Biotechnology, 2022, 10:938056.
[22] ZHAO N N, SONG J, ZHANG H, et al.Development of a transcription factor-based diamine biosensor in Corynebacterium glutamicum[J].ACS Synthetic Biology, 2021, 10 (11):3074-3083.
[23] NUÑEZ S, BARRA M, GARRIDO D.Developing a fluorescent inducible system for free fucose quantification in Escherichia coli[J].Biosensors, 2023,13(3):388.
[24] WU T, CHEN Z Y, GUO S Y, et al.Engineering transcription factor BmoR mutants for constructing multifunctional alcohol biosensors[J].ACS Synthetic Biology, 2022, 11(3):1251-1260.
[25] CHEN S Y, WEI W P, YIN B C, et al.Development of a highly sensitive whole-cell biosensor for arsenite detection through engineered promoter modifications[J].ACS Synthetic Biology, 2019, 8(10):2295-2302.
[26] LI C, GAO X, QI H B, et al.Substantial improvement of an epimerase for the synthesis of D-allulose by biosensor-based high-throughput microdroplet screening[J].Angewandte Chemie International Edition, 2023, 62(10):e202216721.
[27] SNOEK T, CHABERSKI E K, AMBRI F, et al.Evolution-guided engineering of small-molecule biosensors[J].Nucleic Acids Research, 2020, 48(1):e3.
[28] DE PAEPE B, MAERTENS J, VANHOLME B, et al.Chimeric LysR-type transcriptional biosensors for customizing ligand specificity profiles toward flavonoids[J].ACS Synthetic Biology, 2019, 8(2):318-331.
[29] CHENG F, TANG X L, KARDASHLIEV T.Transcription factor-based biosensors in high-throughput screening:Advances and applications[J].Biotechnology Journal, 2018, 13(7):e1700648.
[30] WILDING M, HONG N, SPENCE M, et al.Protein engineering:The potential of remote mutations[J].Biochemical Society Transactions, 2019, 47(2):701-711.
[31] HUO Y, YU H, CHEN Z.New BmoR F276A/E627 N biosensor mutant based on the transcription factor useful for screening isobutanol-producing strains:China, CN110615832-A[P].2019-12-27.
[32] CHEN Y, HO J M L, SHIS D L, et al.Tuning the dynamic range of bacterial promoters regulated by ligand-inducible transcription factors[J].Nature Communications, 2018, 9(1):64.
[33] GONG X Y, ZHANG R H, WANG J, et al.Engineering of a TrpR-based biosensor for altered dynamic range and ligand preference[J].ACS Synthetic Biology, 2022, 11(6):2175-2183.
[34] DING N N, YUAN Z Q, ZHANG X J, et al.Programmable cross-ribosome-binding sites to fine-tune the dynamic range of transcription factor-based biosensor[J].Nucleic Acids Research, 2020, 48(18):10602-10613.
[35] MORALES M A, HALPERN J M.Guide to selecting a biorecognition element for biosensors[J].Bioconjugate Chemistry, 2018, 29(10):3231-3239.
[36] LI J W, ZHANG X Y, WU H, et al.Transcription factor engineering for high-throughput strain evolution and organic acid bioproduction:A review[J].Frontiers in Bioengineering and Biotechnology, 2020, 8.
[37] MORMINO M, SIEWERS V, NYGÅRD Y.Development of an Haa1-based biosensor for acetic acid sensing in Saccharomyces cerevisiae[J].FEMS Yeast Research, 2021, 21(6):foab049.
[38] XU M J, LIU P P, CHEN J M, et al.Development of a novel biosensor-driven mutation and selection system via in situ growth of corynebacterium crenatum for the production of L-arginine[J].Frontiers in Bioengineering and Biotechnology, 2020, 8: 175.
[39] GAO J S, DU M H, ZHAO J H, et al.Design of a genetically encoded biosensor to establish a high-throughput screening platform for L-cysteine overproduction[J].Metabolic Engineering, 2022, 73:144-157.
[40] CHEN D D, XU S M, LI S L, et al.Directly evolved AlkS-based biosensor platform for monitoring and high-throughput screening of alkane production[J].ACS Synthetic Biology, 2023, 12 (3):832-841.
[41] MAHR R, GÄTGENS C, GÄTGENS J, et al.Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum[J].Metabolic Engineering, 2015, 32:184-194.
[42] SEOK J Y, HAN Y H, YANG J S, et al.Synthetic biosensor accelerates evolution by rewiring carbon metabolism toward a specific metabolite[J].Cell Reports, 2021, 36(8):109589.
[43] CHA J W, JANG S H, SON J, et al.Engineering of Klebsiella oxytoca for the production of 2,3-butanediol from high concentration of xylose[J].ACS Sustainable Chemistry & Engineering, 2021, 9 (43):14395-14404.
[44] ZHANG X M, SUN Z H, BIAN J Y, et al.Rational metabolic engineering combined with biosensor-mediated adaptive laboratory evolution for L-cysteine overproduction from glycerol in Escherichia coli[J].Fermentation-Basel, 2022, 8(7):299.
[45] RAMAN S, ROGERS J K, TAYLOR N D, et al.Evolution-guided optimization of biosynthetic pathways[J].Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50):17803-17808.
[46] ZHENG S, HOU J, ZHOU Y, et al.One-pot two-strain system based on glucaric acid biosensor for rapid screening of myo-inositol oxygenase mutations and glucaric acid production in recombinant cells[J].Metabolic Engineering, 2018, 49:212-219.
[47] HAN L C, LIU X Y, CHENG Z Z, et al.Construction and application of a high-throughput in vivo screening platform for the evolution of nitrile metabolism-related enzymes based on a desensitized repressive biosensor[J].ACS Synthetic Biology, 2022, 11(4):1577-1587.
[48] XU P, LI L Y, ZHANG F M, et al.Improving fatty acids production by engineering dynamic pathway regulation and metabolic control[J].Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(31):11299-11304.
[49] LO T M, CHNG S H, TEO W S, et al.A two-layer gene circuit for decoupling cell growth from metabolite production[J].Cell Systems, 2016, 3 (2):133-143.
[50] WU S B, XUE Y T, YANG S J, et al.Combinational quorum sensing devices for dynamic control in cross-feeding cocultivation[J].Metabolic Engineering, 2021, 67:186-197.
[51] LIU D, SICA M S, MAO J W, et al.A p-Coumaroyl-CoA biosensor for dynamic regulation of naringenin biosynthesis in Saccharomyces cerevisiae[J].ACS Synthetic Biology, 2022, 11 (10):3228-3238.
[52] ZHANG J, WANG Z G, SU T Y, et al.Tuning the binding affinity of heme-responsive biosensor for precise and dynamic pathway regulation[J].iScience, 2020, 23 (5):101067.