[1] MA J, DASGUPTA P K. 氰化物检测的最新进展[J]. 分析化学学报, 2010, 673(2): 117-125.
MA J, DASGUPTA PK. Recent developments in cyanide detection: A review[J]. Analytic Chimica Acta, 2010, 673(2): 117-125.
[2] 龙凌亮, 周丽萍, 王琳. 一种高选择性灵敏的氰化物荧光比色探针及其在天然水和生物样品中氰化物检测中的应用[J]. 分析方法, 2013, 5(23): 6605-6610.
LONG L L, ZHOU L P, WANG L. A highly selective and sensitive fluorescence ratiometric probe for cyanide and its application for the detection of cyanide in natural water and biological samples[J]. Analytical Methods, 2013, 5(23): 6605-6610.
[3] TAHERI A, NOROOZIFAR M, KHORASANI M. 于三维溶胶-凝胶嵌入Ag纳米颗粒的新型电化学氰化物传感器的研究[J]. 电分析化学杂志, 2009, 628 (1): 48-54.
TAHERI A, NOROOZIFAR M, KHORASANI M. Investigation of a new electrochemical cyanide sensor based on Ag nanoparticles embedded in a three-dimensional sol-gel[J]. Journal of Electroanalytical Chemistry, 2009, 628(1): 48-54.
[4] 牛力, 罗冠龙, 王婧. 白酒中氰化物的测定及不确定度的评定[J]. 酿酒, 2020, 47(2):100-103.
NIU L, LUO G L, WANG J. Determination of cyanide in liquor and evaluation of uncertainty[J]. Liquor Making, 2020, 47(2):100-103.
[5] 丁国强, 周辉, 徐建伟, 等. 用含苯并噻二唑的共轭共聚物电荧光法检测氰化物阴离子[J]. 化学通讯, 2014, 50(6): 655-657.
DING G Q, ZHOU H, XU J W, et al. Electrofluorochromic detection of cyanide anions using a benzothiadiazole-containing conjugated copolymer[J]. Chemical Communications, 2014, 50(6): 655-657.
[6] 刘舒治, 杨敏, 刘毅江, 等. 基于三苯基咪唑半菁染料的新型“开启”荧光探针比色法检测100%水溶液中的CN-[J]. 危险材料, 2018, 344: 875-882.
LIU S Z, YANG M, LIU Y, et al. A novel “turn-on” fluorescent probe based on triphenylimidazole-hemicyanine dyad for colorimetric detection of CN- in 100% aqueous solution[J]. Journal of Hazardous Materials, 2018, 344: 875-882.
[7] TIGREROS A, ROSERO H A, CASTILLO J C, et al. 吡唑并[1,5-a]嘧啶-半花青体系作为比色和荧光化学传感器用于水中氰化物识别[J]. Talanta, 2018, 196: 395-401.
TIGREROS A, ROSERO H A, CASTILLO J C, et al. Integrated pyrazolo[1,5-a] pyrimidine-hemicyanine system as a colorimetric and fluorometric chemosensor for cyanide recognition in water[J]. Talanta, 2018, 196: 395-401.
[8] 何海茵, 李南, 熊含鸿, 等. 顶空气相色谱-质谱法测定白酒中的氰化物含量[J]. 食品安全质量检测学报, 2019, 10(13):4068-4073.
HE H Y, LI N, XIONG H H, et al. Determination of cyanide in liquor by headspace gas chromatography-mass spectrometry[J]. Journal of Food Safety & Quality, 2019, 10(13):4068-4073.
[9] 孟梁, 申贵隽, 张强. 金属配位剂衍生-高效液相色谱法测定粮食及白酒中的游离氰化物[J]. 分析科学学报, 2009, 25(5):587-589.
MENG L, SHEN G J, ZHANG Q. Metal-ligand reagent derivatization and high-performance liquid chromatography determination for free cyanide analysis[J]. Journal of Analytical Science, 2009, 25(5):587-589.
[10] LINDSAY A E, GREEBAUM AR, O’HARE D. 健康受试者和火灾受害者血液和公布的血液氰化物浓度的分析技术[J].分析化学学报, 2004, 511: 185-195.
LINDSAY A E, GREEBAUM A R, O’HARE D. Analytical techniques for cyanide in blood and published blood cyanide concentrations from healthy subjects and fire victims[J]. Analytic Chimica Acta, 2004, 511: 185-195.
[11] 刘芯韵, 张坤, 易啸, 等. 离子色谱法测定蒸馏酒中氰化物含量的方法性能分析[J]. 食品与发酵科技, 2017, 53(2):94-95; 126.
LIU X Y, ZHANG K, YI X, et al. Method performance analysis of determination of cyanide in distilled wines by ion chromatography[J]. Food and Fermentation Sciences & Technology, 2017, 53(2):94-95; 126.
[12] 黄华杰, 郭祥捷, 彦敏敏, 等. 在三维氮硫共掺杂石墨烯纳米带结构上生长的分散良好的Pt纳米颗粒:用于甲醇氧化的高活性电催化剂[J]. 材料能源, 2021, 21: 100814.
HUANG H J, GUO X J, YAN M, et al. Well-dispersive Pt nanoparticles grown on 3D nitrogen-and sulfur-codoped graphene nanoribbon architectures: highly active electrocatalysts for methanol oxidation[J]. Materials Today Energy, 2021, 21: 100814.
[13] 张贺, 李思容, 刘玉峰, 等. Fe3O4@GO磁性纳米复合材料保护间充质干细胞,促进大鼠骨髓间充质细胞向成骨分化[J]. 生物材料科学, 2020, 8 (21): 5984-5993.
ZHANGS H, LI S R, LIU Y F, et al. Fe3O4@GO magnetic nanocomposites protect mesenchymal stem cells and promote osteogenic differentiation of rat bone marrow mesenchymal stem cells[J]. Biomaterial Science, 2020, 8 (21): 5984-5993.
[14] 周彬彬, 张继红, 王芳斌, 等. 可视化分子探针的设计、合成及其对食品中氰化物的检测[J]. 食品科学, 2017, 38(12):304-309.
ZHOU B B, ZHANG J H, WANG F B, et al. Design, synthesis and application of colorimetric probe for cyanide detection in food[J]. Food Science, 2017, 38(12):304-309.
[15] 黄志成, 刘碧武, 刘觉文. 包覆部分磷酸铁壳提高金纳米粒子的过氧化物酶活性和稳定性[J]. 纳米尺度, 2020, 12 (44): 22467-22472.
HUANG Z C, LIU B W, LIU J W. Enhancing the peroxidase-like activity and stability of gold nanoparticles by coating a partial iron phosphate shell[J]. Nanoscale, 2020, 12 (44): 22467-22472.
[16] 赵庆武, 刘志新, 高坤, 等. 离子选择电极法测定生活饮用水中氰化物方法的研究[J]. 医学动物防制, 2018, 34(12):1172-1174.
ZHAO Q W, LIU Z X, GAO K, et al. Study on the method of determining cyanide in drinking water by ion selective electrode[J]. Journal of Medical Pest Control, 2018, 34(12):1172-1174.
[17] 韦太宝, 李文婷, 李乔, 等. 开启式荧光化学传感器选择性检测纯水和食品样品中的氰化物[J]. Tetrahedron Letters, 2016, 57(25): 2767-2771.
WEI T B, LI W T, LI Q, et al. A turn-on fluorescent chemosensor selectively detects cyanide in pure water and food sample[J]. Tetrahedron Letters, 2016, 57(25): 2767-2771.
[18] PANJA S, PANJA A, GHOSH K. 氰化物传感中的超分子凝胶研究进展[J]. 材料化学前沿, 2021, 5 (2): 584-602.
PANJA S, PANJA A, GHOSH K. Supramolecular gels in cyanide sensing:A review[J]. Materials Chemistry Frontiers, 2021, 5(2): 584-602.
[19] LUCONI L, MERCURI G, ISLAMOGLU T, et al. 苯并噻唑功能化NU-1000:一种用于二氧化碳吸附和氰化物发光传感的通用材料[J]. 材料化学, 2020, 8 (22): 7492-7500.
LUCONI L, MERCURI G, ISLAMOGLU T, et al. Benzothiazolium-functionalized NU-1000: A versatile material for carbon dioxide adsorption and cyanide luminescence sensing[J]. Journal of Material Chemistry, 2020, 8 (22): 7492-7500.